Skip to main content

Hydrophobic weak polyelectrolyte gels: Studies of swelling equilibria and kinetics

  • Chapter
  • First Online:
Book cover Responsive Gels: Volume Transitions I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 109))

Abstract

This article summarizes studies of the equilibrium and kinetic swelling properties of a class of hydrophobic weak polyelectrolyte copolymer gels synthesized from n-alkyl methacrylates (hydrophobic) and N,N-dimethylaminoethyl methacrylate (weak base). We present evidence for a pH-driven swelling phase transition, and consider the effect of pH buffers on equilibria. A simple model based on ideal Donnan equilibrium is able to predict qualitative trends but is unsuccessful in making quantitative predictions of buffer effects on swelling equilibria. Buffers also strongly influence swelling kinetics. It is demonstrated that suitably chosen buffers can act as proton carriers which, under the right circumstances, speed up swelling and deswelling substantially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

n-AMA:

n-alkyl methacrylate

BMA:

butyl methacrylate

ClHAc:

chloroacetic acid

DMA:

N,N-dimethylaminoethyl methacrylate

DVB:

divinyl benzene

EMA:

ethyl methacrylate

HAc:

acetic acid

HEMA:

hydroxyethyl methacrylate

HMA:

hexyl methacrylate

MA:

methacrylic acid

MeOHAc:

methoxyacetic acid

PMA:

propyl methacrylate

h:

Thickness of gel

pH:

pH of outer solution

pK:

Log ionization constant of buffer

pKa:

Log ionization constant of ionizable group on gel

t:

Time

t1/2 :

Half time for completion of diffusion process

taccel :

Acceleration time

w(t):

Fractional deswelling as function of time

zi :

Valence of i-th ionic species

{C}:

Set of ion concentrations in gel and outer solution

CAH :

Concentration of buffer in acid form in outer solution

CAT :

Total buffer concentration in outer solution

Ci :

Concentration of i-th ionic species inside gel

C′i :

Concentration of i-th ionic species in outer solution

D:

Diffusion coefficient

De:

Deborah number

EWF:

Equilibrium water fraction

I:

Ionic strength

Pext :

Excess pressure applied to gel

Q(t):

Degree of swelling as function of time

R:

Gas constant

“R”:

“Rate” of swelling

T:

Temperature

Tg :

Glass transition temperature

V:

Volume of Gel

W(t):

Weight of gel as function of time

α:

Exponent for cumulative swelling expression

ΔG:

Total free energy change due to swelling

ΔGion :

Component of ΔG due to ions

ΔGnet :

Component of ΔG due to polymer network and solvent

λ:

Donnan ratio

ion :

Ion swelling pressure

net :

Swelling pressure due to polymer network and solvent

ρp :

Specific gravity of polymer

σ0 :

Molar density of amine groups in dry network

φ:

Volume fraction of polymer

8 References

  1. Kou JH, Amidon GL, Lee PI (1988) Pharmaceutical Res 5: 592

    Google Scholar 

  2. Dong L-C, Hoffman AS (1991) J Controlled Release 15: 141

    Google Scholar 

  3. Brannon-Peppas L, Peppas NA (1989) J Controlled Release 8: 267

    Google Scholar 

  4. Brøndsted H, Kopeček J (1992) In: Harland RS, Prod'homme R (eds) Polyelectrolyte gels. Properties, preparation and application. ACS Symp Ser vol 480, Washington, p 285

    Google Scholar 

  5. Siegel RA, Firestone BA (1986) Macromolecules 21: 3254

    Google Scholar 

  6. Tanaka T, Fillmore D, Sun ST, Nishio I, Swislow G, Shah A (1980) Phys Rev Letters 45: 1636

    Google Scholar 

  7. Ohmine I, Tanaka T (1982) J Chem Phys 77: 5725

    Google Scholar 

  8. Rička J, Tanaka T (1984) Macromolecules 17: 2916

    Google Scholar 

  9. Katayama S, Ohata A (1985) Macromolecules 18: 2781

    Google Scholar 

  10. Hirokawa T, Tanaka T, Sato E (1985) Macromolecules 18: 2782

    Google Scholar 

  11. Hirotsu S, Hirokawa Y, Tanaka T (1987) J Chem Phys 87: 1392

    Google Scholar 

  12. Beltran S, Hooper HH, Blanch HW, Prausnitz JM (1990) J Chem Phys 92: 2061

    Google Scholar 

  13. Vieth WR, Howell JM, Hsieh JH (1976) J Membr Sci 1: 177

    Google Scholar 

  14. Sato-Matsuo E, Tanaka T (1988) J Chem Phys 89: 1695

    Google Scholar 

  15. Annaka M, Tanaka T (1992) Nature 355: 430

    Google Scholar 

  16. DeMoor CP, Doh L, Siegel RA (1991) Biomaterials 12: 836

    Google Scholar 

  17. Siegel RA, Firestone BA, Cornejo-Bravo J (1991) In: DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels-fundamentals and biomedical applications. Plenum, New York, p 309

    Google Scholar 

  18. Firestone BA, Siegel RA (1993) J Biomater Sci Polym Ed (in press)

    Google Scholar 

  19. Martin A, Swarbrick J, Cammarata A (1983) Physical pharmacy, 3rd edn. Lea and Febiger, Philadelphia

    Google Scholar 

  20. Bockris JO'm, Reddy AKN (1970) Modern electrochemistry. Plenum, New York

    Google Scholar 

  21. Collins KD, Washabaugh MW (1985) Q Rev Biophys 18: 323

    Google Scholar 

  22. Proctor HR, Wilson JA (1916) J Chem Soc (London) 105: 307

    Google Scholar 

  23. Flory PJ (1953) Principles of polymer chemistry. Cornell, Ithaca

    Google Scholar 

  24. Siegel RA (1990) In: Kost J (ed) Pulsed and self-regulated drug delivery. CRC Press, Boca Raton, p 129

    Google Scholar 

  25. Katchalsky A, Michaeli I (1955) J Polym Sci 15: 69

    Google Scholar 

  26. Hasa J, Ilavský M, Dušek K (1975) J Polym Sci Polym Phys Ed 13: 253

    Google Scholar 

  27. Vasheghani-Farahani E, Vera JH, Cooper DG, Weber ME (1990) Ind Eng Chem Res 29: 554

    Google Scholar 

  28. Grignon J, Scallan AM (1980) J Appl Polym Sci 25: 2829

    Google Scholar 

  29. Urry DW, Peng SQ, Hayes L, Jaggard J, Harris RD (1990) Biopolymers 30: 215

    Google Scholar 

  30. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  31. Buckley DJ, Berger M (1962) J Polym Sci 56: 175

    Google Scholar 

  32. Crank J, Park GS (eds) (1968) Diffusion in polymers. Academic, London

    Google Scholar 

  33. Frisch HL (1980) Polym Eng Sci 20: 2

    Google Scholar 

  34. Papanu JS, Soane DS, Bell AT, Hess DW (1989) J Appl Polym Sci 38: 859

    Google Scholar 

  35. Thomas N, Windle AH (1982) Polymer 23: 529

    Google Scholar 

  36. Vrentas JS, Jarzebski CM, Duda JL (1975) AIChEJ 21: 894

    Google Scholar 

  37. Kwei TK, Zupko HM (1969) J Polym Sci A-2 7: 867

    Google Scholar 

  38. Davidson GWR, Peppas NA (1986) J Controlled Release 3: 259

    Google Scholar 

  39. Lee PI, Kim C-J (1991) J Membr Sci 65: 77

    Google Scholar 

  40. Alfree Jr T, Gurnee EF, Lloyd WG (1966) J Polym Sci C12: 249

    Google Scholar 

  41. Firestone BA, Siegel RA (1991) J Appl Polym Sci 43: 901

    Google Scholar 

  42. Petropoulos JH, Roussis PP (1978) J Membrane Sci 3: 343

    Google Scholar 

  43. Firestone BA, Siegel RA (1988) Polym Commun 29: 204

    Google Scholar 

  44. Siegel RA, Johannes I, Hunt CA, Firestone BA (1992) Pharmaceutical Res 9: 76

    Google Scholar 

  45. Chou LY, Blanch HW, Prausnitz JM, Siegel RA (1992) J Appl Polym Sci 45: 1411

    Google Scholar 

  46. Tanaka T, Hocker L, Benedek GB (1973) J Chem Phys 59: 5151

    Google Scholar 

  47. Tanaka T, Fillmore DJ (1979) J Chem Phys 70: 1214

    Google Scholar 

  48. Grimshaw PE, Nussbaum JH, Yarmush ML, Grodzinsky AJ (1990) J Chem Phys 93: 4462

    Google Scholar 

  49. Cussler EL (1975) Diffusion: Mass transfer in fluid systems. Cambridge University Press, Cambridge

    Google Scholar 

  50. Bae YH, Okano T, Hsu R, Kim SW (1987) Makromol Chem Rapid Commun 8: 481

    Google Scholar 

  51. Gehrke SH, Cussler EL (1989) Chem Eng Sci 44: 559

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Dušek

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Siegel, R.A. (1993). Hydrophobic weak polyelectrolyte gels: Studies of swelling equilibria and kinetics. In: Dušek, K. (eds) Responsive Gels: Volume Transitions I. Advances in Polymer Science, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56791-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-56791-7_6

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56791-2

  • Online ISBN: 978-3-540-47737-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics