Skip to main content

The photochemistry of polyhalocompounds, dehalogenation by photoinduced electron transfer, new methods of toxic waste disposal

  • Chapter
  • First Online:
Photoinduced Electron Transfer V

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 168))

Abstract

Recent work on the mechanisms of the photohydrodehalogenation of haloarenes, with an emphasis on polyhaloarenes, and the related mechanisms of phototransformations of aliphatic halocompounds are reviewed. Attention is focused on the nature of the excimer in the photochemical transformations of haloarenes without additional electron transfer reagent and on the nature of the exciplex formed in phototransformations in the presence of electron transfer reagent. Applications of surface catalyzed photochemical transformations and photohydrodehalogenation of polyhaloarenes to toxic waste disposal is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Freeman PK, Srinivasa R, Campbell J-A, Deinzer ML (1986) J Am Chem Soc 108: 5531

    Google Scholar 

  2. Freeman PK, Ramnath N (1988) J Org Chem 53: 148

    Google Scholar 

  3. Pitts JN, Burley DR, Mani JC, Broadbent AD (1968) J Am Chem Soc 90: 5900, 5902

    Google Scholar 

  4. Kochevar IE, Wagner PJ (1972) J Am Chem Soc 94: 3859

    Google Scholar 

  5. Lamola AA, Hammond GS (1965) J Chem Phys 43: 2129

    Google Scholar 

  6. Turro NJ (1978) Modern molecular photochemistry. Benjamin Cummings, Menlo Park, CA, p 254

    Google Scholar 

  7. Ethyl alcohol has a greater ET value than acetonitrile (51.9 vs. 46.0), and the rate constant for excimer formation of 4-bromobiphenyl is 60% greater in ethyl alcohol than in acetonitrile, J-S. Jang (unpublished work)

    Google Scholar 

  8. Birks JB (1970) Photophysics of aromatic molecules, Wiley: New York, p 372

    Google Scholar 

  9. Freeman PK, Srinivasa R (1987) J Org Chem 52: 252

    Google Scholar 

  10. Freeman PK, Jang J-S, Ramnath N (1991) J Org Chem 56: 6072

    Google Scholar 

  11. Bunce NJ, Safe S, Ruzo LO (1975) J Chem Soc Perkin Trans 1 1607

    Google Scholar 

  12. Pedersen CL, Lohse C (1975) Acta Chemi Scand B 33: 649

    Google Scholar 

  13. Ruzo LO, Zabik MJ (1975) Bull Environ Contam Toxicol 13: 181

    PubMed  Google Scholar 

  14. Sandros K (1969) Acta Chemi Scand 23: 2815

    Google Scholar 

  15. O'Donnell CM, Harbaugh KF, Fisher RP, Winefordner JD (1973) Analyt Chem 45: 609

    Google Scholar 

  16. Egger KE, Cocks AT (1973) Helv Chim Acta 56: 1516

    Google Scholar 

  17. Wagner PJ (1971) J Acc Chem Res 4: 168

    Google Scholar 

  18. Wagner PJ, Kochevar I (1968) J Am Chem Soc 90: 2232

    Google Scholar 

  19. Wettack FS, Renkes GD, Renkly MG, Turro NJ, Dalton JE (1970) J Am Chem Soc 92: 1318

    Google Scholar 

  20. Dimroth K, Reichardt C, Seipman T, Bohlman F (1963) Justus Liebig Ann Chem 661: 1

    Google Scholar 

  21. Reichardt C (1971) ibid. 752: 64

    Google Scholar 

  22. Reichardt C (1965) Angew Chem Int Ed Engl 4: 29

    Google Scholar 

  23. Totter WJ (1977) Bull Environ Contam Toxicol 18: 726

    PubMed  Google Scholar 

  24. Abraham MH, Doherty RU, Kamlet MJ, Harris JM, Taft RW (1987) ibid 1097: 913

    Google Scholar 

  25. Freeman PK, Lee Y-S (1992) J Org Chem 57: 2846

    Google Scholar 

  26. Yekta A, Aikawa M, Turro NJ (1979) Chem Phys Lett 63: 542

    Google Scholar 

  27. Infelta PP (1979) Chem Phys Lett 61: 88

    Google Scholar 

  28. Selinger BK, Watkins AR (1978) Chem Phys Lett 56: 99

    Google Scholar 

  29. Dorrance RC, Hunter TF (1974) J Chem Soc Faraday Trans 70: 1572

    Google Scholar 

  30. Infelta PP, Grätzel M (1979) J Chem Phys 70: 179

    Google Scholar 

  31. Moore T, Pagni RM (1987) J Org Chem 52: 770

    Google Scholar 

  32. Soumillion JP, Wolf BD (1981) J Chem Soc Chem Commun 436

    Google Scholar 

  33. Ito R, Migita T, Morikawa N, Simamura O (1965) Tetrahedron 21: 955

    Google Scholar 

  34. Chambers RD, Close D, Williams DLH (1980) J Chem Soc Perkin Trans 2: 778

    Google Scholar 

  35. Chambers RD, Waterhouse JS, Williams DLH (1977) J Chem Soc Perkin Trans 2: 585

    Google Scholar 

  36. Schmidt RD (1991) M.S. Thesis, Oregon State University

    Google Scholar 

  37. Freeman PK, Ramnath N (1991) J Org Chem 56: 3646

    Google Scholar 

  38. Bursey MM, McLafferty FW (1967) J Am Chem Soc 89: 1

    Google Scholar 

  39. Bursey MM, McLafferty FW (1966) J Am Chem Soc 88: 4484

    Google Scholar 

  40. Bursey MM, McLafferty FW (1966) J Am Chem Soc 88: 529

    Google Scholar 

  41. Jones DAD, Smith GG (1964) J Org Chem 29: 3531

    Google Scholar 

  42. Wells PR (1968) In: Linear free energy relationships, Academic Press, New York, Chapter 2

    Google Scholar 

  43. Chambers RD, Close D, Williams DLH (1980) J Chem Soc Perkin Trans 2: 778

    Google Scholar 

  44. Chambers RD, Waterhouse JS, Williams DLH (1977) J Chem Soc Perkin Trans 2: 585

    Google Scholar 

  45. Allen KJ, Bolton R, Williams GH (1983) J Chem Soc Perkin Trans 2: 691

    Google Scholar 

  46. Burdon J, Gill HS, Parsons IW, Tatlow JC (1980) J Chem Soc Perkin Trans 1: 1726

    Google Scholar 

  47. Burdon J, Parsons IW, Gill HS (1979) J Chem Soc Perkin Trans 1: 1351

    Google Scholar 

  48. Burdon J, Parsons IW (1977) J Am Chem Soc 99: 7445

    Google Scholar 

  49. Burdon J (1965) J Tetrahedron 21: 3373

    Google Scholar 

  50. Burdon J, Childs AC, Parsons IW, Tatlow JC (1982) J Chem Soc Chem Commun 534

    Google Scholar 

  51. Bethell D, Compton RG, Wellington RG (1992) J Chem Soc Perkin Trans 2: 147

    Google Scholar 

  52. Symons MCR, Bowman WR (1988) J Chem Soc Perkin Trans 2: 583

    Google Scholar 

  53. Amatore C, Oturan MA, Pinson J, Savéant J, Thiébault A (1985) J Am Chem Soc 107: 3451

    Google Scholar 

  54. Dressler R, Allan M, Haselbach E (1985) Chimia 39: 385

    Google Scholar 

  55. Bays JP, Blumer ST, Baral-Tosh S, Behar D, Neta P (1983) J Am Chem Soc 105: 320

    Google Scholar 

  56. Riederer H, Huttermann J, Symons MCR (1978) J Chem Soc Chem Commun 313

    Google Scholar 

  57. Bunnett J (1992) J Acc Chem Res 25: 2

    Google Scholar 

  58. Bowman WR, Taylor P (1990) J Chem Soc Perkin Trans 1: 919

    Google Scholar 

  59. Symons MCR, Bowman WR (1990) J Chem Soc Perkin Trans 2: 975

    Google Scholar 

  60. Moreno M, Gallardo I, Bertrán J (1989) J Chem Soc Perkin Trans 2: 2017

    Google Scholar 

  61. Bunce NJ, Gallagher JC (1982) J Org Chem 47: 1955

    Google Scholar 

  62. Freeman PK, Clapp GE, Stevenson BK (1991) Tetrahedron Lett 5705

    Google Scholar 

  63. Bunce NJ, Pilon P, Ruzo LO, Sturch DJ (1976) J Org Chem 41: 3023

    Google Scholar 

  64. Barltrop JA, Bradbury D (1973) J Am Chem Soc 95: 5085

    Google Scholar 

  65. Epling GA, Florio EJ (1986) J Chem Soc Chem Commun 185

    Google Scholar 

  66. Epling GA, Florio E (1986) Tetrahedron Lett 27: 675

    Google Scholar 

  67. Pownall HJ, Smith LC (1973) J Am Chem Soc 95: 3136

    Google Scholar 

  68. Shinoda K, Soda T (1963) J Phys Chem 67: 2072

    Google Scholar 

  69. Katusin-Razem B, Wong M, Thomas JK (1978) J Am Chem Soc 100: 1679

    Google Scholar 

  70. Ericksson JC, Gillberg G (1966) Acta Chemi Scand 20: 2019

    Google Scholar 

  71. Dainty C, Bruce DW, Cole-Hamilton DJ, Camilleri P (1984) J Chem Soc Chem Commun 1324

    Google Scholar 

  72. Soumillion PJ, Wolf BD (1981) J Chem Soc Chem Commun 436

    Google Scholar 

  73. Freeman PK, Ramnath N, Richardson AD (1991) J Org Chem 56: 3643

    Google Scholar 

  74. Freeman PK, Hutchinson LL (1983) J Org Chem 48: 4705

    Google Scholar 

  75. Freeman PK, Hutchinson LL (1980) ibid 48: 4705 and references therein

    Google Scholar 

  76. Szwarc M (1974) In Ions and ion pairs in organic solutions; Szwarc M (ed), John Wiley New York Vol 2, Chapter 1

    Google Scholar 

  77. Nichols D, Sutphen C, Szwarc M (1968) J Phys Chem 72: 1021

    Google Scholar 

  78. Canters GW de Boer E (1973) Mol Phys 26: 1185

    Google Scholar 

  79. Mataga N, Okada T, Kanda Y, Shioyama H (1986) Tetrahedron 42: 6143

    Google Scholar 

  80. Weller AZ (1982) Phys Chem Neue Folge 130: 129

    Google Scholar 

  81. Gould IR, Moody R, Farid S (1988) J Am Chem Soc 110: 7242

    Google Scholar 

  82. Goodman JL, Peters KS (1986) J Phys Chem 90: 5506

    Google Scholar 

  83. Dewar MJS, Dougherty RC (1975) The PMO theory of organic chemistry: Plenum: New York pp 78

    Google Scholar 

  84. Burdon J, Gill HS, Parsons IW, Tatlow JC (1980) J Chem Soc Perkin Trans 1: 1726

    Google Scholar 

  85. Saplay KM, Damodaran NP (1983) J Scient and Indust Res 42: 602

    Google Scholar 

  86. Kropp PJ, Pienta NJ, Sawyer JA, Polniaszek RP (1981) Tetrahedron 37: 3229

    Google Scholar 

  87. For reviews: a. Kropp PJ (1984) J Acc Chem Res 17: 131

    Google Scholar 

  88. Lodder G (1983) In: Patai S, Rappoport Z (eds) The chemistry of halides, pseudohalides and azides. Wiley, Chichester, p 1605

    Google Scholar 

  89. Kropp PJ, Poindexter GS, Pienta NJ, Hamilton DC (1976) J Am Chem Soc 98: 8135

    Google Scholar 

  90. Kropp PJ, Adkins RL (1991) J Am Chem Soc 113: 2709

    Google Scholar 

  91. Stevenson DP, Coppinger GM (1962) J Am Chem Soc 84: 149

    Google Scholar 

  92. Kropp PJ, McNeely SA, Davis RD (1983) J Am Chem Soc 105: 6907

    Article  Google Scholar 

  93. Kitamura T, Shinjiro K, Taniguchi H (1982) J Org Chem 47: 2323

    Article  Google Scholar 

  94. van Ginkel FIM, Cornelisse J, Lodder G (1991) J Am Chem Soc 113: 4261

    Article  Google Scholar 

  95. Verbeek JM, Cornelisse J, Lodder G (1986) Tetrahedron 42: 5679

    Article  Google Scholar 

  96. Bunnett JF, Wamser CF (1967) J Am Chem Soc 89: 6712

    Article  Google Scholar 

  97. Kitamura T, Kobayashi S, Taniguchi H (1984) J Org Chem 49: 4755

    Article  Google Scholar 

  98. Kitamura T, Kobayashi S, Taniguchi H (1990) J Org Chem 55: 1801

    Article  Google Scholar 

  99. Zupančič N, Šket B (1991) Tetrahedron 47: 9071

    Google Scholar 

  100. Cristol SJ, Bindell TH (1983) in Organic photochemistry Padwa A (ed), 6, Marcell Dekker New York, p 327

    Google Scholar 

  101. Cristol SJ, Dickenson WA, Stanko MK (1983) J Am Chem Soc 105: 1218

    Google Scholar 

  102. Cristol SJ, Seapy DG, Aeling EO (1983) J Am Chem Soc 105: 7337

    Google Scholar 

  103. Cristol SJ, Bindel TH, Hoffman D, Aeling EO (1984) J Org Chem 49: 2368

    Google Scholar 

  104. Cristol SJ, Aeling EO (1985) J Org Chem 50: 2698

    Google Scholar 

  105. Cristol, SJ, Opitz RJ (1985) J Org Chem 50: 4558

    Google Scholar 

  106. Zimmerman HE, Sandel VR (1963) J Am Chem Soc 85: 915

    Google Scholar 

  107. Cristol SJ, Aeling EO, Heng R (1987) J Am Chem Soc 109: 830

    Google Scholar 

  108. Cristol SJ, Aeling EO, Strickler SJ, Ito RD (1987) J Am Chem Soc 109: 7101

    Google Scholar 

  109. Cristol SJ, Ali MZ (1985) J Org Chem 50: 2502

    Google Scholar 

  110. Cristol SJ, Opitz RJ, Aeling EO (1985) J Org Chem 50: 4834

    Google Scholar 

  111. Cristol SJ, Braun D, Schloemer GC, Vanden Plas BJ (1986) Can J Chem 64: 1081

    Google Scholar 

  112. Cristol SJ, Vanden Plas BJ (1989) J Org Chem 54: 1209

    Google Scholar 

  113. Cristol SJ, Mahfuza BA, Sankar IV (1989) J Am Chem Soc 111: 8207

    Google Scholar 

  114. Cristol SJ, Vanden Plas BJ (1991) J Phys Org Chem 4: 541

    Google Scholar 

  115. Morrison H, Nash JJ, (1990) J Org Chem 55: 1141

    Google Scholar 

  116. Morrison H, Singh TV, de Cardenas L (1986) J Am Chem Soc 108: 3862

    Google Scholar 

  117. Morrison H, Miller A, Bigot B (1983) J Am Chem Soc 105: 2398

    Article  Google Scholar 

  118. Morrison H, Muthuramu K, Pandey G, Severance D, Bigot B (1986) J Org Chem 51: 3358

    Article  Google Scholar 

  119. Morrison H, Muthuramu K, Severance D (1986) J Org Chem 51: 4681

    Article  Google Scholar 

  120. Sabin F, Türk T, Vogler A (1992) J Photochem Photobiol A: Chem 63: 99

    Article  Google Scholar 

  121. Mao Y, Schöenich C, Asmus K-D (1991) J Phys Chem 95: 10080

    Article  Google Scholar 

  122. Fox, MA (1987) In Topics in current chemistry, 142; Steckhan E, (ed), Springer-Verlag: New York, p 99

    Google Scholar 

  123. Ollis DF, Pelizzetti E, Serpone N (1989) In: Sepone N, Pelizzetti E (eds), Photocatalysis fundamentals and applications. John Wiley, New York, p 603

    Google Scholar 

  124. Ollis DF (1985) Environ Sci Technol 19: 480

    Article  Google Scholar 

  125. Hisanaga T, Harada K, Tanaka K (1990) J Photochem Photobiol A: Chem 54: 113

    Article  Google Scholar 

  126. Turro NJ, Liu K-C, Chow M-F, Lee P (1978) Photochem Photobiol 27: 523

    Google Scholar 

  127. Egger KW, Cocks AT (1973) Helv Chim Acta 56: 1516

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jochen Mattay

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Freeman, P.K., Hatlevig, S.A. (1993). The photochemistry of polyhalocompounds, dehalogenation by photoinduced electron transfer, new methods of toxic waste disposal. In: Mattay, J. (eds) Photoinduced Electron Transfer V. Topics in Current Chemistry, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56746-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-56746-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56746-2

  • Online ISBN: 978-3-540-47646-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics