Statistical methods in learning

  • A. Sutherland
  • R. Henery
  • R. Molina
  • C. C. Taylor
  • R. King
Acquiring Knowledge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 682)


In this paper we describe an ESPRIT project known as ‘Stat-Log’ whose purpose is the comparison of learning algorithms. We give a brief summary of some of the algorithms in the project: linear and quadratic discriminant analysis, k nearest neighbour, CART, backpropagation, SMART, ALLOC80 and Pearl's polytree algorithm. We discuss the results obtained for two datasets, one of handwritten digits and the other of vehicle silhouettes.


Hide Node Training Time Smoothing Parameter Decision Class Causal Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acid, S., de Campos, L.M., Gonzalez, A., Molina, R., Pérez de la Blanca, N.: Learning with CASTLE. In: R. Kruse, P. Siegel (eds.): Symbolic and Quańtitative Approaches to Uncertainty. Lecture Notes in Computer Science 548. Springer Verlag, (1991) 99–106.Google Scholar
  2. 2.
    Acid, S., de Campos, L.M., González, A., Molina, R., Pérez de la Blanca, N.: CAS-TLE: A tool for Bayesian learning, Proc. of the 1991 ESPRIT Conference (1991) 363–377.Google Scholar
  3. 3.
    Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J.: Classification and Regression Trees. Wadsworth. (1984)Google Scholar
  4. 4.
    Friedman, J.H. & Stuetzle, W.: Projection pursuit regression. J. Amer. Statist. Assoc. 76 (1981) 817–823Google Scholar
  5. 5.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan and Kaufmann (San Mateo, Ca.) (1988)Google Scholar
  6. 6.
    Remme, J., Habbema, J.D.F. & Hermans, J.: A simulative comparison of linear, quadratic and kernel discrimination. J. Statist. Comput. Simul. 11 (1980) 87–106.Google Scholar
  7. 7.
    Rumelhart, D.E., Hinton, G.E. and Williams, R.J.: Learning Representations by Back-propagating Errors. Nature 323 (1986) 533–536.Google Scholar
  8. 8.
    Weigend, A.S., Huberman, B.A. and Rumelhart, D.E.: Predicting the Future: a connectionist approach. International Journal of Neural Systems 1 (1990) 193–209.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. Sutherland
    • 1
  • R. Henery
    • 1
  • R. Molina
    • 2
  • C. C. Taylor
    • 3
  • R. King
    • 1
  1. 1.Department of Statistics and Modelling ScienceUniversity of StrathclydeGlasgowScotland
  2. 2.Departamento de Ciencias de la Computación e I.A.Universidad de GranadaGranadaSpain
  3. 3.Department of StatisticsUniversity of LeedsLeedsEngland

Personalised recommendations