Advertisement

Accumulation and inference over finite-generated algebras for mapping approximations

  • Jaume Casasnovas
  • Jose J. Miro-Julia
Logical Methods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 682)

Abstract

In this paper we propose a generalization of Belnap's method in which we assign values to the elements of a Boolean Algebra of Propositions to represent the partial knowledge known of a valuation over the algebra. This generalizations includes mappings that are not a homomorphism respect to all the operations, but only respect to some, like the measures of possibility or of necessity. We also propose the generalization of the method by which we can refer to and accumulate all the available information of a set of generators. This will let us make inferences of valid approximations.

Keywords

Boolean Algebra Valid Approximation Balearic Island Information Lattice Partial Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.D. Belnap, Jr. A useful four-valued logic. In G. Epstein, editor, Modern Uses of Multiple Valued Logic, pages 8–40. Boston, MA, 1977.Google Scholar
  2. 2.
    Jaume Casasnovas. Contribution a una Formalización de la Inferencia Directa. PhD thesis, Universitat de les Illes Balears, Palma de Mallorca, Spain, 1989.Google Scholar
  3. 3.
    D. Driankov. Towards a many-valued logic of quantified belief: The information lattice. International Journal of Intelligent Systems, 6:135–166, 1991.Google Scholar
  4. 4.
    D. Dubois and H. Prade. Properties of measures of information in evidence and possibility theories. Fuzzy Sets and Systems, 24:161–182, 1987.Google Scholar
  5. 5.
    D. Dubois and H. Prade. The treatment of uncertainty in the knowledge-based systems using fuzzy sets and possibility theory. International Journal of Intelligent Systems, 3:141–165, 1988.Google Scholar
  6. 6.
    José Miró-Juliá. Contribución al Estudio de la Demostración Automática. PhD thesis, Universitat de les Illes Balears, Palma de Mallorca, Spain, July 1988.Google Scholar
  7. 7.
    Helena Rasiowa. An Algebraic Approach to Non-Classical Logics. North Holland, Amsterdam, 1974.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Jaume Casasnovas
    • 1
  • Jose J. Miro-Julia
    • 1
  1. 1.Departament de Matemàtiques i InformàticaUniversity of the Balearic IslandsPalma de MallorcaSpain

Personalised recommendations