A shock origin for interstellar H2O masers

  • David Hollenbach
  • Moshe Elitzur
  • Christopher F. McKee
7. Water Masers in Star-Forming Regions
Part of the Lecture Notes in Physics book series (LNP, volume 412)


We present a comprehensive model for the powerful H2O masers observed in starforming regions. In this model the masers occur behind dissociative shocks propagating in dense regions (preshock density n o ≈ 106 – 108 cm−3). This paper focuses on high-velocity (ν s ≳ 30 km/s) dissociative shocks in which the heat of H2 reformation on dust grains maintains a large column of ≈ 300 – 400 K gas, where the chemistry drives a considerable fraction of the oxygen not in CO to form H2O . The H2O column densities, the hydrogen densities, and the warm temperatures produced by these shocks are sufficiently high to enable powerful maser action, where the maser is excited by thermal collisions with H atoms and H2 molecules. A critical ingredient in determining the shock structure is the magnetic pressure, and the fields required by our models are in agreement with recent observations. The observed brightness temperatures (generally ≈ 1011 – 1014 K) are the result of coherent velocity regions which have dimensions in the shock plane that are 5 to 50 times the postshock thickness.


Brightness Temperature Shock Plane Shock Model Star Form Region Large Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Elitzur, M., Hollenbach, D.J., & McKee, C.F. 1989, Ap. J., 346, 983(EHM).Google Scholar
  2. Elitzur, M., Hollenbach, D.J., & McKee, C.F. 1992, Ap.J., in press.Google Scholar
  3. Felli, M., Palagi, F., & Tofani, G. 1992, Astr. Astrophys., in press.Google Scholar
  4. Fiebig, D. & Güsten, R. 1989, Astr. Ap. Letters, 214, 333.Google Scholar
  5. Genzel, R. 1986, in Masers, Molecules and Mass Outflows in Star Forming Regions, ed. A.D. Haschick (Westford, MA:Haystack Observatory), p233.Google Scholar
  6. Heiles, C., Goodman, A.A., McKee, C.F., & Zweibel, E.G. 1992, in Protostars and Planets III, ed. E. Levy, J. Lunine & M. Matthews (Tucson: Univ. of Arizona Press), in press.Google Scholar
  7. Hollenbach, D.J., Chernoff, D., & McKee, C.F. 1989, in Infrared Spectroscopy in Astronomy, ed. B. Kaldeich, ESA SP-290, p245.Google Scholar
  8. Hollenbach, D.J. & McKee, C.F. 1979, Ap. J. Suppl., 41, 555.Google Scholar
  9. Hollenbach, D.J. & McKee, C.F. 1989, Ap. J., 342, 306(HM).Google Scholar
  10. Hollenbach, D.J., McKee, C.F., & Chernoff, D. 1987, in Star Forming Regions, ed. M. Peimbert & J. Jugaku (Dordrecht: Reidel), p334.Google Scholar
  11. Neufeld, D. & Melnick, G. 1990, Ap. J. Letters, 352, L9.Google Scholar
  12. Walker, R.C., Matsakis, D.N., & Garcia-Barreto, J.A. 1982, Ap. J., 255, 128.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • David Hollenbach
    • 1
  • Moshe Elitzur
    • 2
  • Christopher F. McKee
    • 3
  1. 1.NASA Ames Research CenterMoffett Field
  2. 2.University of KentuckyLexington
  3. 3.University of CaliforniaBerkeley

Personalised recommendations