Skip to main content

C-sensitive triangulations approximate the minmax length triangulation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 652))

Abstract

We introduce the notion of a c-sensitive triangulation based on the local notion of a c-sensitive triangulation edge. We show that any c-sensitive triangulation of a planar point set approximates the minmax length triangulation of the set within the factor 2(c+1). On the other hand we prove that the greedy triangulation and the Dclaunay triangulation of a planar straight-line graph are respectively 4-sensitive and 1-sensitive. We also generalize the relationship between c-sensitive triangulations and the minmax length triangulation to include appropriately augmented planar straight-line graphs. This enables us to obtain a O(n) log n)-time heuristic for the minmax length triangulation of an arbitrary planar straight-line graph with the approximation factor bounded by 3. A modification of the above heuristic for simple polygons runs in linear time.

This work was partially supported by NFR, STU, STUF and TFR.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bramble and M. Zlamal. Triangular elements in the finite element method. Math. Computation 24 (1970), pp. 809–820.

    Google Scholar 

  2. B. Chazelle. Triangulating a Simple Polygon in Linear Time. Proc. 31st IEEE FOCS Symposium, 1990.

    Google Scholar 

  3. B. Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenic Mathematicheskii i Estestvennyka Nauk 7 (1934), pp. 793–800.

    Google Scholar 

  4. G. Das and D. Joseph. Which Triangulations Approximate the Complete Graph? In Proc. Int. Symp. on Optimal Algorithms, LNCS 401, pp. 168–192, Springer Verlag.

    Google Scholar 

  5. H. Edelsbrunner. Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Science 10, 1987, Springer Verlag.

    Google Scholar 

  6. H. Edelsbrunner and T. S. Tan. A Quadratic Time Algorithm for the MinMax Length Triangulation. In Proc. 32nd Ann. IEEE Sympos. Found. Comput. Sci., 1991, pp. 414–423.

    Google Scholar 

  7. H. Edelsbrunner, T. S. Tan and R. Waupotisch. An O(n2 log n) time algorithm for the minmax angle triangulation. In Proc. 6th Ann. Sympos. Comput. Geom., 1990, pp. 44–52.

    Google Scholar 

  8. D.G. Kirkpatrick, A Note on Delaunay and Optimal Triangulations. IPL, Vol. 10, No. 3, pp. 127–131.

    Google Scholar 

  9. R. Klein and A. Lingas On Computing Voronoi Diagrams for Simple Polygons. To appear in Proc. 8th ACM Symposium on Computational Geometry, Berlin, 1992.

    Google Scholar 

  10. G. T. Klincsek. Minimal triangulations of polygonal domains. Annals Discrete Math. 9 (1980), pp. 121–123.

    Google Scholar 

  11. D.T. Lee. Two-Dimensional Voronoi Diagrams in the L p-metric. JACM, 27(4), 1980, pp. 604–618.

    Article  Google Scholar 

  12. D.T. Lee and A. Lin. Generalized Delaunay Triangulations for Planar Graphs. Discrete and Computational Geometry 1, 1986, Springer Verlag, pp. 201–217.

    Google Scholar 

  13. C. Levcopoulos and A. Lingas. On approximation behavior of the greedy triangulation for convex polygons. Algorithmica 2, 1987, pp. 175–193.

    Article  Google Scholar 

  14. C. Levcopoulos and A. Lingas. Fast Algorithms for Greedy Triangulation. Proc. SWAT'90, Lecture Notes in Computer Science 447, Springer Verlag, pp. 238–250.

    Google Scholar 

  15. A. Lingas. A new heuristic for minimum weight triangulation. SIAM J. Algebraic Discrete Methods 8 (1987), pp. 646–658.

    Google Scholar 

  16. F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Texts and Monographs in Theoretical Computer Science, Springer Verlag, New York, 1985.

    Google Scholar 

  17. V. T. Rajan. Optimality of the Delaunay Triangulation in R d. In Proc. 7th Ann. Sympos. Comput. Geom., 1991, pp. 357–363.

    Google Scholar 

  18. R. Sibson. Locally equiangular triangulations. Comput. J. 21 (1978), pp. 243–245.

    Article  Google Scholar 

  19. F. W. Wilson, R. K. Goodrich and W. Spratte. Lawson's triangulation is nearly optimal for controlling error bounds. SIAM J. Numer. Anal. 27 (1990), pp. 190–197.

    Article  Google Scholar 

  20. C. Wang and L. Schubert. An Optimal Algorithm for Constructing the Delaunay Triangulation of a Set of Line Segments. Proc. 3rd ACM Symposium on Computational Geometry, Waterloo, pp. 223–232, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rudrapatna Shyamasundar

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levcopoulos, C., Lingas, A. (1992). C-sensitive triangulations approximate the minmax length triangulation. In: Shyamasundar, R. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1992. Lecture Notes in Computer Science, vol 652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56287-7_98

Download citation

  • DOI: https://doi.org/10.1007/3-540-56287-7_98

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56287-0

  • Online ISBN: 978-3-540-47507-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics