The application of the searching over separators strategy to solve some NP-complete problems on planar graphs

  • R. Z. Hwang
  • R. C. T. Lee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 650)


Recently, we proposed a new strategy for designing algorithms, called the searching over separators strategy. We applied this approach to solve some famous NP-Complete problems in subexponential time such as the discrete Euclidean P-median problem, the discrete Euclidean P-center problem, the Euclidean P-center problem and the Euclidean traveling salesperson problem. In this paper, we further extend this strategy to solve two well known NP-Complete problems, the planar partition-into-clique problem (PCliPar) and the planar steiner tree problem (PStTree). We propose \(O(n^{o(\sqrt n )} )\) algorithms for both problems, where n is the number of vertices in the input graph.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Bell Telephone Laboratories, Inc., New York, 1976.Google Scholar
  2. 2.
    J. L. Bentley. Divide and Conquer Algorithms for Closest Point Problems in Multidimensional Space. PhD thesis, Department of Cimputer Science, University of North Carolina, 1976.Google Scholar
  3. 3.
    J. L. Bently. Multidimensional Divide-and-Conquer. Communications of the ACM, 23:214–229, 1980.CrossRefGoogle Scholar
  4. 4.
    U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, New York, 1972.Google Scholar
  5. 5.
    M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York, 1979.Google Scholar
  6. 6.
    E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Computer Science Press, Inc., New York, 1978.Google Scholar
  7. 7.
    R. Z. Hwang, R. C. T. Lee, and R. C. Chang. The Searching over Separators Strategy to Solve Some NP-hard Problems in Subexponential Time. Accepted by Algorithmica, 1992.Google Scholar
  8. 8.
    D. S. Johnson. The NP-Completeness Column: an Ongoing Guide. Journal of Algorithms, 6:434–451, 1985.Google Scholar
  9. 9.
    E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Traveling Salesman Problem — A Guided Tour of Combinatorial Optimization. Wiley-Interscience, New York, 1985.Google Scholar
  10. 10.
    R. J. Lipton and R. E. Tarjan. A Separator Theorem for Planar Graphs. SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.CrossRefGoogle Scholar
  11. 11.
    N. Megiddo and K. J. Supowit. On the Complexity of Some Common Geometric Location Problems. SIAM Journal on Computing, 13(1):182–196, 1984.CrossRefGoogle Scholar
  12. 12.
    G. L. Miller. Finding Small Simple Cycle Separators for 2-Connected Planar Graphs. Journal of Computer and System Sciences, 32:265–279, 1986.Google Scholar
  13. 13.
    T. Nishizeki and N. Chiba. Planar Graphs, Theory and Algorithms. Elsevier Science Publisher B.V., Amsterdam, 1988.Google Scholar
  14. 14.
    F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag, New York, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • R. Z. Hwang
    • 1
  • R. C. T. Lee
    • 1
  1. 1.Department of Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan, 30043, Republic of China

Personalised recommendations