Skip to main content

A gradiometer experiment to detect the gravitomagnetic field of the earth

  • Relativistic Celestial Mechanics, Astrometry, Geodesy
  • Conference paper
  • First Online:
Relativistic Gravity Research With Emphasis on Experiments and Observations

Part of the book series: Lecture Notes in Physics ((LNP,volume 410))

  • 172 Accesses

Abstract

We describe a space-borne experiment to detect the Lense-Thirring field produced by the proper rotation (mass-current) of the Earth. This gravitomagnetic field will generate an increasing signal in a gravity gradiometer orbiting the Earth in local inertial (gyroscope) orientation. For a polar orbit of 600 km altitude, the signal will grow with a (constant) rate of about 2 x 10−4 E per month (1E = 1 Eötvös = 10−9 sec −2). In view of instrumental accuracies achieved in the last years, this effect could, in principle, be detected at present by Paik's high-sensitive superconducting gravity gradiometer in combination with precise gyroscopes placed in a drag-free Earth's satellite. A preliminary error analysis for the experiment indicates that the effect could already be measured after ≈ 1 month with sufficient accuracy (relative error of ≈ 1%). To achieve this, precise gyroscopes would be necessary, which, however, were allowed to be less precise than the present Stanford gyroscopes by a factor of - 20. In addition, we present a method for isolating the gravitomagnetic signal from the dominant Newtonian background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. H. Thirring, Phys. Z. 19, 33 (1918); J. Lense and H. Thirring, Phys. Z. 19, 156 (1918). See also B. Mashhoon, F.W. Hehl and D.S. Theiss, Gen. Rel. Grav. 16, 711 (1984).

    Google Scholar 

  2. L.I. Schiff, Phys. Rev. Lett. 4, 215 (1960); Proc. Nat. Acad. Sci. U.S. 46, 871 (1960).

    Google Scholar 

  3. C.W.F. Everitt et al., in Near Zero: Festschrift for William M. Fairbank, edited by C.W.F. Everitt (Freeman, San Francisco, 1986).

    Google Scholar 

  4. I.Ciufolini, Phys. Rev. Lett. 56, 278 (1986).

    PubMed  Google Scholar 

  5. V.B. Braginsky and A.G. Polnarev, Pis'ma Zh. Eksp. Teor. Fiz. 31, 444 (1980) [JETP Lett. 31, 415 (1980)].

    Google Scholar 

  6. B. Mashhoon and D.S. Theiss, Phys. Rev. Lett. 49, 1542 (1982).

    Article  Google Scholar 

  7. D.S. Theiss, Ph.D thesis, University of Cologne (Köln, 1984).

    Google Scholar 

  8. D.S. Theiss, Phys. Lett. A 109, 19 (1985).

    Article  Google Scholar 

  9. B. Mashhoon, Found. Phys. 15 (Bergmann Festschrift), 497 (1985).

    Article  Google Scholar 

  10. H.J. Paik, B. Mashhoon, and C.M. Will, in Experimental Gravitational Physics, edited by P.F. Michelson, Hu En-ke, and G. Pizella (World Scientific, Singapore, 1988), p.229; B. Mashhoon, H.J. Paik, and C.M. Will, Phys. Rev. D 39, 2825 (1989). See also H.J. Paik, Adv. Space Res. 9, 41 (1989).

    Google Scholar 

  11. E. Gill, J. Schastok, M.H. Soffel, and H. Ruder, Phys. Rev. D 39, 2441 (1989).

    Article  Google Scholar 

  12. C.A. Blockley and G.E. Stedman, Phys. Lett. A 147, 161 (1990).

    Article  Google Scholar 

  13. D.S. Theiss, in Proc. First William Fairbank Meeting on Relativistic Gravitational Experiments in Space (Rome, 1990), to appear in the Advanced Series in Astrophysics and Cosmology, edited by L.Z. Fang and R. Ruffini (World Scientific, Singapore).

    Google Scholar 

  14. B. Mashhoon and D.S. Theiss, Nuovo Cimento B 106, 545 (1991).

    Google Scholar 

  15. D.S. Theiss and B. Mashhoon, Comment on “On the Mashhoon-Theiss ‘Anomaly'”, preprint.

    Google Scholar 

  16. The exterior gravitational field of a slowly rotating spherical body can be described by the Kerr metric linearized in the angular momentum parameter α = JIM; see References 6–9, 14, and 19.

    Google Scholar 

  17. In the post-Schwarzschild approximation, deviations of the gravitational field from spherical symmetry — caused, e.g., by the proper rotation (cf. Ref. 16)) or the oblateness of the body — are considered to first order, whereas the mass of the central body is taken into account to all orders. To the appropriate order in 1/c (c velocity of light) this scheme reduces to the standard post-Newtonian approximation.

    Google Scholar 

  18. This (sidereal) frame refers to distant stars.

    Google Scholar 

  19. B. Mashhoon and D.S. Theiss, Phys. Lett. A 115, 333 (1986).

    Article  Google Scholar 

  20. I.I. Shapiro, R.D. Reasenberg, J.F. Chandler, and R.W. Babcock, Phys. Rev. Lett. 61, 2643 (1988). See also B. Bertotti, I. Ciufolini, and P.L. Bender, Phys. Rev. Lett. 58, 1062 (1987).

    PubMed  Google Scholar 

  21. Schiff precession is a gravitomagnetic effect, caused by' the proper rotation of a central mass and describes the dragging of local inertial frames (relative to the sidereal frame) in the post-Newtonian (weak-field) approximation; cf. Ref. 2.

    Google Scholar 

  22. Greek indices run from 0 to 3; Latin indices run from 1 to 3. Summation convention is used throughout.

    Google Scholar 

  23. In the post-Schwarzschild approximation, ΓLT is of the same form as Eq. (10), where A(T) is given by the expression (7); cf. References 7 and 8.

    Google Scholar 

  24. M.V. Moody, H.A. Chan, and H.J. Paik, J. Appl. Phys. 60, 4308 (1986); H.A. Chan and H.J. Paik, Phys. Rev. D 35, 3551 (1987); H.A. Chan, M.V. Moody, and H.J. Paik, Phys. Rev. D 35, 3572 (1987).

    Article  Google Scholar 

  25. See, e.g., M.V. Moody and H.J. Paik, in Relativistic Gravitational Experiments in Space, proceedings of a workshop sponsored by the National Aeronautics and Space Administration, edited by R.W. Hellings (Scientific and Technical Information Division, NASA Conference Publication 3046, Washington, D.C., 1989), p. 211.

    Google Scholar 

  26. This signal subtraction method is similar to that described in Ref. 10; see also Ref. 13.

    Google Scholar 

  27. This Newtonian contribution is given by K N11 2(1-3cos2ωτ), K N22 2, K N33 =-(K N11 +K N22 ), K N13 =-3/2ω2sin2ωτ, K N12 =K N23 =0.

    Google Scholar 

  28. The components22 δΩi of the frequency vector describing the gyroscopes′ drift are given by the equations \(- [({{dDH^T } \mathord{\left/{\vphantom {{dDH^T } d}} \right.\kern-\nulldelimiterspace} d}\tau )D]_{ij} \equiv {{dI_{ij} } \mathord{\left/{\vphantom {{dI_{ij} } d}} \right.\kern-\nulldelimiterspace} d}\tau = \varepsilon _{ijk} \delta \Omega ^k ;\delta \Omega \equiv \sqrt {\delta \Omega _i \delta \Omega ^i }\).

    Google Scholar 

  29. See, e.g., C.W.F. Everitt, B.W. Parkinson, and J.P Turneau, in Relativistic Gravitational Experiments in Space, proceedings of a workshop sponsored by the National Aeronautics and Space Administration, edited by R.W. Hellings (Scientific and Technical Information Division, NASA Conference Publication 3046, Washington, D.C., 1989), p. 118.

    Google Scholar 

  30. There are, however, several errors that can be treated similarly as in Ref. 10 (sidereal orientation of gradiometer axes).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Ehlers G. Schäfer

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Theiss, D.S. (1992). A gradiometer experiment to detect the gravitomagnetic field of the earth. In: Ehlers, J., Schäfer, G. (eds) Relativistic Gravity Research With Emphasis on Experiments and Observations. Lecture Notes in Physics, vol 410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56180-3_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-56180-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56180-4

  • Online ISBN: 978-3-540-47483-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics