Skip to main content

Representing the spatial/kinematic domain and lattice computers

  • Conference paper
  • First Online:
Analogical and Inductive Inference (AII 1992)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 642))

Included in the following conference series:

  • 145 Accesses

Abstract

An approach to analogical representation for objects and their motions in space is proposed.

This approach involves lattice computer architectures and associated algorithms and is shown to be abstracted from the behavior of human beings mentally solving spatial/kinematic puzzles. There is also discussion of where in this approach the modeling of human cognition leaves off and the engineering begins.

The possible relevance of the approach to a number of issues in Artificial Intelligence is discussed. These issues include efficiency of sentential versus analogical representations, common sense reasoning, update propagation, learning performance tasks, diagrammatic representations, spatial reasoning, metaphor, human categorization, and pattern recognition.

Lastly there is a discussion of the somewhat related approach involving cellular automata applied to computational physics.

The research was supported in part by NSF Grant CCR 8713846. We would like to thank Dan Chester for helpful comments on the exposition in an earlier draft. The email address for communication regarding this paper is ‘case@cis.udel.edu’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Anthony. Essai de recherche d'une expression anatomique approximative du degré d'organisation cérébrale autre que le poids de l'encephale comparée au poids du corps. Bulletin de la Societé N' Anthropologie de Paris, 9:1–67, 1938.

    Google Scholar 

  2. Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure. Technical Report B-90-9, Institute for Computer Science, Dept. of Mathematics, Freie Universität Berlin, November 1990.

    Google Scholar 

  3. F. C. Bartlett. Remembering — A Study in Experimental and Social Psychology. Cambridge University Press, Cambridge, 1932. Reprinted, 1977.

    Google Scholar 

  4. R. Baron. A model of mental imagery. Int. J. Man-Machine Studies, 23:313–334, 1985.

    Google Scholar 

  5. R. Baron. Visual memories and mental images. Int. J. Man-Machine Studies, 23:275–311, 1985.

    Google Scholar 

  6. R. Baron. The Cerebral Computer. Lawrence Erlbaum, Associates, Hillsdale, NJ, 1987.

    Google Scholar 

  7. S. M. Blinkov and I. I. Glezer. The Human Brain in Figures and Tables. Plenum Press, NY, 1968.

    Google Scholar 

  8. Ronald Brachman and Hector J. Levesque, editors. Readings in Knowledge Representation. Morgan Kaufmann Publishers, Inc., 1985.

    Google Scholar 

  9. Ned Block, editor. Imagery. MIT Press, Cambridge, MA, 1981.

    Google Scholar 

  10. R. Brooks. Symbolic reasoning among 3-d models and 2-d images. Artificial Intelligence, 17:285–348, 1981.

    Google Scholar 

  11. A. W. Burks, editor. Essays on Cellular Automata. Univ. of Illinois Press, 1970.

    Google Scholar 

  12. J. Case. Learning machines. In W. Demopoulos and A. Marras, editors, Language Learning and Concept Acquisition: Foundational Issues. Ablex Publishing Company, Norwood, NJ, 1986.

    Google Scholar 

  13. J. Case. Turing machine. In Stuart Shapiro, editor, Encyclopedia of Artificial Intelligence. John Wiley and Sons, New York, NY, 1987.

    Google Scholar 

  14. Tripathi Chandrupatla and Ashok Belegundu. Introduction to Finite Elements in Engineering. Prentice-Hall, NJ, 1991.

    Google Scholar 

  15. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press/McGraw Hill, 1990.

    Google Scholar 

  16. J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Springer Verlag, 1988.

    Google Scholar 

  17. E. F. Codd. Cellular Automata. Academic Press, 1968.

    Google Scholar 

  18. Norman D. Cook. The Brain Code: Mechanisms of Information Transfer and the Role of the Corpus Callosum. Methuen, London, 1986.

    Google Scholar 

  19. J. Case, D. S. Rajan, and A. M. Shende. Optimally representing euclidean space discretely for analogically simulating physical phenomena. In K. V. Nori, editor, Foundations of Software Technology & Theoretical Computer Science, volume 472 of Lecture Notes in Computer Science, pages 190–203. Springer Verlag, Berlin, 1990. See [CRS91a].

    Google Scholar 

  20. John Case, Dayanand S. Rajan, and Anil M. Shende. Parallel processor computer, Dec 1990. U.S. Patent Application submitted by SUNY, Research Foundation.

    Google Scholar 

  21. John Case, Dayanand S. Rajan, and Anil M. Shende. Lattice computers for optimally representing euclidean space. Technical Report 91-15, University of Delaware, June 1991. Expands on and corrects slightly [CRS90a].

    Google Scholar 

  22. John Case, Dayanand S. Rajan, and Anil M. Shende. Simulating uniform motion in lattice computers I: Constant speed particle translation. Technical Report 91-17, University of Delaware, June 1991.

    Google Scholar 

  23. John Case, Dayanand S. Rajan, and Anil M. Shende. Spherical wave front generation in lattice computers. Technical Report 91-16, University of Delaware, June 1991.

    Google Scholar 

  24. J. Case and C. Smith. Comparison of identification criteria for machine inductive inference. Theor. Comp. Sci., 25:193–220, 1983.

    Google Scholar 

  25. Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6/7), 1982.

    Google Scholar 

  26. U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier Stokes equation. Physical Review Letters, 56(14):1505–1508, April 1986.

    Google Scholar 

  27. R. A. Finke. Levels of equivalence in imagery and perception. Psychological Review, 87:113–139, 1980.

    Google Scholar 

  28. M. Flynn and R. Kosaraju. Kybernetes, 5:159–163, 1976.

    Google Scholar 

  29. K. Forbus. A study of qualitative and geometric knowledge in reasoning about motion. Technical Report AI.TR.615, MIT, AI-Lab, February 1981.

    Google Scholar 

  30. K. Forbus. Qualitative reasoning about space and motion. In D. Gentner and A. Stevens, editors, Mental Models. Lawrence Erlbaum Associates, Hillsdale, N.J., 1983.

    Google Scholar 

  31. R. A. Finke and M. J. Schmidt. Orientation-specific color after-effects following imagination. Journal of Experimental Psychology: Human Perception and Performance, 3:599–606, 1977.

    Google Scholar 

  32. Edward Fredkin and Tommaso Toffoli. Conservative logic. International Journal of Theoretical Physics, 21(3/4), 1982.

    Google Scholar 

  33. Brian V. Funt. Problem-solving with diagrammatic representations. Artificial Intelligence, 13:201–230, 1980. Reprinted in [BL85].

    Google Scholar 

  34. Howard Gardner. The Shattered Mind: The Person after Brain Damage. Knopf, New York, 1975.

    Google Scholar 

  35. Howard Gardner. Art, Mind, and Brain: A Cognitive Approach to Creativity. Basic Books, New York, 1982.

    Google Scholar 

  36. H. Gelernter. Realization of a geometry theorem-proving machine. In E. Feigenbaum and J. Feldman, editors, Computers and Thought. McGraw-Hill, NY, 1963.

    Google Scholar 

  37. M. Garey and D. Johnson. Computers and Intractability. Freeman, 1979.

    Google Scholar 

  38. Peter M. Gruber and Gerrit Lekkerkerker. Geometry of Numbers. North-Holland Mathematical Library, 1987.

    Google Scholar 

  39. M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kaufmann, Los Altos, CA, 1987.

    Google Scholar 

  40. Brosl Hasslacher. Discrete fluids. Los Alamos Science, (15):175–217, 1987. Special Issue.

    Google Scholar 

  41. Werner Heisenberg. Physics and Philosophy. Harper & Brothers Publishers, New York, 1958.

    Google Scholar 

  42. I. N. Herstein. Topics in Algebra. Blaisdell Publishing Co., 1964.

    Google Scholar 

  43. G. Hinton. Some demonstrations of the effects of structural descriptions in mental imagery. Cognitive Science, 3:231–250, 1979.

    Google Scholar 

  44. M. Kinsbourne. Hemispheric specialization and the growth of human understanding. American Psychologist, 37(4):411–420, April 1982.

    PubMed  Google Scholar 

  45. H. T. Kung and C. E. Leiserson. Systolic arrays (for VLSI). In Proceedings of the Symposium on Sparse Matrix Computing and Their Applications, pages 245–282, November 1978.

    Google Scholar 

  46. P. Kochevar. A simple light simulation algorithm for massively parallel machines. Journal of Parallel and Distributed Computing, 13(2):193–201, October 1991.

    Google Scholar 

  47. Stephen M. Kosslyn. Image and Mind. Harvard Univ. Press, Cambridge, Massachusetts, 1980.

    Google Scholar 

  48. Stephen M. Kosslyn. Ghosts in the Mind's Machine: Creating and Using Images in the Brain. Harvard Univ. Press, Cambridge, Massachusetts, 1983.

    Google Scholar 

  49. G. Lakoff and M. Johnson. Metaphors We Live By. University of Chicago Press, 1980.

    Google Scholar 

  50. J. Larkin and H. Simon. Why a picture is (sometimes) worth ten thousand words. Cognitive Science, 1987.

    Google Scholar 

  51. Thinking Machines. Introduction to data level parallelism. Technical Report 86.14, Thinking Machines, April 1986.

    Google Scholar 

  52. David Marr. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman, San Francisco, 1982.

    Google Scholar 

  53. Norman Margolus. Physics-like models of computation. Physica 10D, pages 81–95, 1984.

    Google Scholar 

  54. Y. Marcoux. Composition is almost as good as s-1-1. In Proceedings, Structure in Complexity Theory-Fourth Annual Conference. IEEE Computer Society Press, 1989.

    Google Scholar 

  55. D. McDermott and E. Davis. Planning routes through uncertain territory. Artificial Intelligence, 22:107–156, 1984.

    Google Scholar 

  56. Marvin Minsky. Cellular vacuum. International Journal of Theoretical Physics, 21(6/7), 1982.

    Google Scholar 

  57. M. Minsky. The Society of Mind. Simon and Schuster, NY, 1986.

    Google Scholar 

  58. M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge, MA, 1969.

    Google Scholar 

  59. C. B. Mervis and E. Rosch. Categorization of natural objects. In M. R. Rosenzweig and L. W. Porter, editors, Annual Review of Psychology, volume 32. 1981.

    Google Scholar 

  60. Russ Miller and Quentin F. Stout. Mesh computer algorithms for computational geometry. IEEE Transactions on Computers, C-38(3):321–340, March 1989.

    Google Scholar 

  61. M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North Holland, New York, 1978.

    Google Scholar 

  62. J. Von Neumann. Theory of Self-Reproducing Automata. Univ. Illinois Press, 1966. edited and compiled by A. W. Burks.

    Google Scholar 

  63. James R. Newman. Science and Sensibility. Simon and Schuster, NY, 1961.

    Google Scholar 

  64. W. D. Nivan, editor. The Scientific Papers of James Clerk Maxwell. Dover Publications, Inc., 1961.

    Google Scholar 

  65. J. O'Neil. Prodigal Genius: The Life of Nikola Tesla. Angriff Press, Hollywood, CA, 1981.

    Google Scholar 

  66. R. Ornstein. The Psychology of Consciousness. Freeman, San Francisco, California, 1972.

    Google Scholar 

  67. Kendall Preston and M. J. B. Duff. Modern Cellular Automata: Theory and Applications. Plenum Publishers, 1984.

    Google Scholar 

  68. John Poulton, Henry Fuchs, et al. PIXEL-PLANES: Building a VLSI-based graphic system. In Chapel Hill Conference on VLSI, 1985.

    Google Scholar 

  69. J. Royer and J. Case. Progressions of relatively succinct programs in subrecursive hierarchies. Technical Report 86-007, Univ. of Chicago, Computer Science Dept., 1986.

    Google Scholar 

  70. J. Royer and J. Case. Intensional Subrecursion and Complexity Theory. Research Notes in Theoretical Science. Pitman Press, in revision, 1991.

    Google Scholar 

  71. G. Riccardi. The Independence of Control Structures in Abstract Programming Systems. PhD thesis, SUNY Buffalo, 1980.

    Google Scholar 

  72. G. Riccardi. The independence of control structures in abstract programming systems. Journal of Computer and System Sciences, 22:107–143, 1981.

    Google Scholar 

  73. E. Rosch and B. Lloyd, editors. Cognition and Categorization. Erlbaum Associates, Hillsdale, NJ, 1978.

    Google Scholar 

  74. David Rumelhart and Donald Norman. Representation in memory. In R. Atkinson, R. Herrnstein, G. Lindzey, and D. Luce, editors, Stevens' Handbook of Experimental Psychology, volume 2: Learning and Cognition. John Wiley and Sons, NY, second edition, 1974.

    Google Scholar 

  75. H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic Logic, 23:331–341, 1958.

    Google Scholar 

  76. H. Rogers. Theory of Recursive Functions and Effective Computability. McGrawHill, New York, 1967. Reprinted, MIT Press, 1987.

    Google Scholar 

  77. J. Royer. A Connotational Theory of Program Structure. Lecture Notes in Computer Science 273. Springer Verlag, 1987.

    Google Scholar 

  78. Dayanand S. Rajan and Anil M. Shende. Efficiently generated lattices and root lattices. Technical Report 92-02, University of Delaware, August 1991. Journal article under review.

    Google Scholar 

  79. R. N. Shepard and S. Chipman. Second-order isomorphism of internal representations: shapes of states. Cognitive Psychology, 1:1–17, 1970.

    Google Scholar 

  80. R. N. Shepard and L. A. Cooper. Mental Images and Their Transformations. MIT Press, Cambridge, Massachusetts, 1982.

    Google Scholar 

  81. P. A. Schilpp, editor. Albert Einstein: Philosopher-Scientist. Open Court, La Salle, IL, 1949.

    Google Scholar 

  82. S. Springer and G. Deutsch. Left Brain, Right Brain. W.H. Freeman, New York, 1985.

    Google Scholar 

  83. B. Selman. Analogues. Technical report, University of Toronto, 1988. Technical Note CSRI-47.

    Google Scholar 

  84. R. N. Shepard and C. Feng. A Chronometric study of mental paperfolding. Cognitive Psychology, 3:228–243, 1972.

    Google Scholar 

  85. R. N. Shepard. The mental image. American Psychologist, 33:123–137, 1978.

    Google Scholar 

  86. Anil M. Shende. Digital Analog Simulation of Uniform Motion in Representations of Physical n-Space by Lattice-Work MIMD Computer Architectures. PhD thesis, SUNY at Buffalo, Buffalo, N. Y., 1991. TR 91-14, Department of Computer Science.

    Google Scholar 

  87. Howard Jay Siegel. Interconnection Networks for Large-Scale Parallel Processing. Lexington Books, 1985.

    Google Scholar 

  88. Aaron Sloman. Interactions between philosophy and A.I.—the role of intuition and non-logical reasoning in intelligence. Artificial Intelligence, 2:209–224, 1971.

    Google Scholar 

  89. Aaron Sloman. Afterthoughts on analogical representations. In Ronald Brachman and Hector J. Levesque, editors, Readings in Knowledge Representation. Morgan Kaufmann Publishers, Inc., 1985.

    Google Scholar 

  90. R. N. Shepard and J. Metzler. Mental rotation of three-dimensional objects. Science, 171(4):701–703, 1971.

    Google Scholar 

  91. R. W. Sperry. Lateral specialization in the surgically separated hemispheres. In B. Milner, editor, Hemispheric Specialization and Interaction. MIT Press, 1974.

    Google Scholar 

  92. Karl Svozil. Are quantum fields cellular automata? Physics Letters A, 119(4), December 1986.

    Google Scholar 

  93. James B. Salem and S. Wolfram. Thermodynamics and hydrodynamics with cellular automata. In S. Wolfram, editor, Theory and Applications of Cellular Automata. World Scientific, 1986.

    Google Scholar 

  94. Tommaso Toffoli and Norman Margolus. Cellular Automata Machines. MIT Press, 1987.

    Google Scholar 

  95. Tommaso Toffoli. Cellular automata machines. Technical Report 208, Comp. Comm. Sci. Dept., University of Michigan, 1977.

    Google Scholar 

  96. Tommaso Toffoli. Computation and construction universality of reversible cellular automata. Journal of Computer and System Sciences, 15:213–231, 1977.

    Google Scholar 

  97. Tommaso Toffoli. CAM: A high-performance cellular-automaton machine. Physica 10D, pages 195–204, 1984.

    Google Scholar 

  98. Gérard Y. Vichniac. Simulating physics with cellular automata. Physica 10D, pages 96–116, 1984.

    Google Scholar 

  99. Paul M. B. Vitányi. Locality, communication and interconnect length in multi-computers. SIAM J. Comp., 17(4):659–672, 1988.

    Google Scholar 

  100. Stephen Wolfram. Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3):601–644, July 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus P. Jantke

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Case, J., Rajan, D.S., Shende, A.M. (1992). Representing the spatial/kinematic domain and lattice computers. In: Jantke, K.P. (eds) Analogical and Inductive Inference. AII 1992. Lecture Notes in Computer Science, vol 642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56004-1_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-56004-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56004-3

  • Online ISBN: 978-3-540-47339-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics