High precision simulations with fast algorithms

  • Ulli Wolff
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 409)


A brief non-rigorous introduction to the Monte Carlo method for the simulation of lattice quantum field theoretical models is given. The associated problem of critical slowing down in the continuum limit is addressed together with its partial solution for some classes of systems. The version of overrelaxation mostly used in practice, with alternating microcanonical and standard updates, is analyzed exactly for free fields and described in numerical applications to spin and gauge systems. Cluster algorithms are briefly introduced, and applications to the two dimensional O(3) δ-model are described in some detail. They include the exploration of scaling behavior, a numerical estimate of scattering phases and the demonstration and test of a general technique to compute running renormalized coupling constants in asymptotically free theories. We conclude with remarks on the present status of algorithm development.


Gauge Theory Correlation Length Fast Algorithm Continuum Limit Free Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sokal, A.D.: Monte Carlo Methods in Statistical Physics: Foundations and New Algorithms, Lecture Notes of the Cours de Troisième Cycle de la Physique en Suisse Romande, Lausanne 1989Google Scholar
  2. 2.
    Adler, S.: Phys. Rev. D23 (1981) 2901Google Scholar
  3. 3.
    Neuberger, H.: Phys. Rev. Lett. 59 (1987) 1877Google Scholar
  4. 4.
    Wolff, U.: Dynamics of hybrid overrelaxation in the Gaussian model, preprint CERN-TH 6408/92Google Scholar
  5. 5.
    Mackenzie, P.: Phys. Lett. 226B (1989) 369Google Scholar
  6. 6.
    Wolff, U.: Scaling topological charge in the CP 3 spin model, preprint CERN 6407/92Google Scholar
  7. 7.
    Apostolakis, J., Fox, G.C., Baillie, C.F.: Nucl.Phys. B (Proc. Suppl.) 20 (1991) 678Google Scholar
  8. 8.
    Creutz, M.: Phys. Rev. D36 (1987) 515; Brown, F.R., Woch, T.J.: Phys. Rev. Lett. 58 (1987) 2394Google Scholar
  9. 9.
    Decker, K., de Forcrand, Ph.: Nucl.Phys. B (Proc. Suppl.) 17 (1990) 567Google Scholar
  10. 10.
    Gupta, R., Kilcup, G.W., Patel, A., Sharpe, S.R., de Forcrand, Ph.: Mod. Phys. Lett. A3 (1988) 1367Google Scholar
  11. 11.
    Booth, S.P., et al.: (UKQCD Collaboration), Towards the continuum limit of SU(2) lattice gauge theory, Liverpool preprint LTH 271 (1991)Google Scholar
  12. 12.
    Swendsen, R.H., Wang, J.-S.: Phys. Rev. Lett. 58 (1987) 86Google Scholar
  13. 13.
    For a review, see, e.g., Stauffer, D.: Phys. Rep. 54 (1979) 1Google Scholar
  14. 14.
    Wolff, U.: Phys. Rev. Lett. 62 (1989) 361Google Scholar
  15. 15.
    Tamayo, P., Brower, R.C., Klein, P.W.: J. Stat. Phys. 58 (1990) 1083Google Scholar
  16. 16.
    Wolff, U.: Phys. Lett. 228B (1989) 379.Google Scholar
  17. 17.
    Brower, R.C., Tamayo, P.: Phys. Rev. Lett. 62 (1989) 1087Google Scholar
  18. 18.
    Frick, Ch., Jansen, K., Seuferling, P.: Phys. Rev. Lett. 63 (1989) 2613Google Scholar
  19. 19.
    Edwards, R., Sokal, A.: Phys. Rev. D40 (1989) 1374Google Scholar
  20. 20.
    Zamolodchikov, A.B., Zamolodchikov, ALB.: Nucl. Phys. B133 (1978) 525Google Scholar
  21. 21.
    Patrascioiu, A., Seiler, E.: The Difference between Abelian and NonAbelian models: Fact and fancy, München preprint MPI-PH-91-87 (1991)Google Scholar
  22. 22.
    Lüscher, M., Wolff, U.: Nucl. Phys. B339 (1990) 222Google Scholar
  23. 23.
    Lüscher, M.: Commun. Math. Phys. 105 (1986) 153Google Scholar
  24. 24.
    Mischer, M.: On a relation between finite size effects and elastic scattering processes, lecture given at Cargèse (1983), in Progress in gauge field theory, eds. Hooft, G.'t: et al. (Plenum, New York, 1984); Commun. Math. Phys. 104 (1986) 77Google Scholar
  25. 25.
    Symanzik, K.: Nucl. Phys. B226 (1983) 187, 205; and Cutoff dependence in lattice ϕ 44 theory in Recent developments in gauge theories (Cargèse 1979) eds. Hooft, G.'t: et al. (Plenum, New York, 1980)Google Scholar
  26. 26.
    Wolff, U.: Nucl. Phys. B334 (1990) 581; Phys. Lett. 222B (1989) 473Google Scholar
  27. 27.
    Hasenfratz, P., Maggiore, M., Niedermayer, F.: Phys. Lett. 245B (1990) 522; Hasenfratz, P., Niedermayer, F.: Phys. Lett. 245B (1990) 529Google Scholar
  28. 28.
    Lüscher, M., Weisz, P., Wolff, U.: Nucl. Phys. B359 (1991) 221Google Scholar
  29. 29.
    Lüscher, M.: Phys. Lett. 118B (1982) 391Google Scholar
  30. 30.
    Lüscher, M., Narayanan, R., Weisz, P., Wolff, U.: The Schrödinger Functional — a Renormalizable Probe for Non-Abelian Gauge Theories, in preparationGoogle Scholar
  31. 31.
    Wolff, U.: Nucl. Phys. B265 [FS15] (1986) 506 and 537Google Scholar
  32. 32.
    Evertz, H.G., Hasenbusch, M., Marcu, M., Pinn, K., Solomon, S.: Nucl.Phys. B (Proc. Suppl.) 20 (1991) 80Google Scholar
  33. 33.
    Hasenbusch, M., Meyer, S.: Phys. Rev. Lett. 66 (1991) 530Google Scholar
  34. 34.
    Kandel, D., Ben-Av, R., Domany, E.: Phys. Rev. Lett. 65 (1990) 941Google Scholar
  35. 35.
    Wang, J.-S., Swendsen, R.H., Kotecký: Phys. Rev. Lett. 63 (1989) 109Google Scholar
  36. 36.
    Ben-Av, R., Kandel, D., Katznelson, E., Lauwers, P.G.: J. Stat. Phys. 58 (1990) 125Google Scholar
  37. 37.
    Brower, R.C., Huang, S.: Phys. Rev. D62 (1990) 708Google Scholar
  38. 38.
    Bunk, B.:An Efficient Algorithm for Cluster Updates in Z(2) Lattice Gauge Theory, in the Proceedings of the Workshop on Fermion Algorithms, HLRZ, Jüllich 1991, eds. Herrmann, H.J., Karsch, K.: (World Scientific 1991)Google Scholar
  39. 39.
    For a new approach for U(1) see: Adler, S.L., Bhanot, G.: Phys. Rev. Lett. 66 (1991) 1807; Adler, S.L., Bhanot, G., Lippert, T., Schilling K., Ueberholz, P.: Defeating Critical Slowing Down for Abelian Gauge Dynamics, Princeton preprint IASSNS-HEP-9139Google Scholar
  40. 40.
    Hasenbusch, M., Meyer, S, Mack, G: Nucl.Phys. B (Proc. Suppl.) 20 (1991) 110; Hasenbusch, M., Meyer, S.: Phys. Rev. Lett. 68 (1992) 435; Testing Accelerated Algorithms in the Lattice CP 3 Model, Kaiserslautern preprint Th 91–23 (1991)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Ulli Wolff
    • 1
  1. 1.Theory DivisionCERNGenéve 23Switzerland

Personalised recommendations