Computer assisted proofs

  • Oscar E. LanfordIII
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 409)


Unit Disk Interval Arithmetic Elementary Operation Uncertainty Region Float Point Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Collet, P., Eckmann, J.P.: Iterated Maps on the Interval as Dynamical Systems (Birkhäuser, Boston) (1980)Google Scholar
  2. Eckmann, J.P., Koch, H., Wittwer, P.: (1984) A computer-assisted proof of universality for area preserving maps Memoirs AMS 47 (1984)Google Scholar
  3. Eckmann, J.P., Wittwer, P.: Computer Methods and Bored Summability Applied to Feigenbaum's Equation (Springer, Berlin Heidelberg) Springer Lecture Notes in Physics Vol 227 (1985)Google Scholar
  4. Fefferman, C., de la Llave, R.: Relativistic stability of matter I Rev. Mat. Iber. 2 (1986) 119–213Google Scholar
  5. Koch, H., Wittwer, P.: A non-Gaussian renormalization group fixed point for hierarchical scalar lattice field theories Commun. Math. Phys. 106 (1986) pp 495–532Google Scholar
  6. Lanford, O.E.: A computer-assisted proof of the Feigenbaum conjectures Bull. Amer. Math. Soc., New Series 6 (1982) pp 427–434Google Scholar
  7. de la Llave, R.: Computer assisted proofs of stability of matter, in Mayer and Schmidt (1991) (1991) pp 116–126Google Scholar
  8. de la Llave, R., Rana, D.: Accurate strategies for small divisor problems Bull. Amer. Math. Soc., New Series 22 (1990) pp 85–90Google Scholar
  9. de la Llave, R., Rana, D.: Accurate strategies for K.A.M. bounds and their implementations, in Mayer and Schmidt (1991) (1991) pp 127–146Google Scholar
  10. MacKay, R.S., Percival, I.C.: Converse KAM: theory and practice Commun. Math. Phys. 98 (1985) pp 469–512Google Scholar
  11. Mayer, K.R., Schmidt, D.S.: (eds) Computer Aided Proofs in Analysis (Springer, New York) (1991)Google Scholar
  12. Mestel. B.D.: A computer assisted proof of universality for cubic critical maps of the circle with golden mean rotation number (Ph. D. Thesis, Mathematics Department, University of Warwick) (1985)Google Scholar
  13. Moore, R.E.: Interval Analysis (Prentice-Hall, Englewood Cliffs) (1966)Google Scholar
  14. Moore, R.E.: Methods and Applications of Interval Analysis (SIAM, Philadelphia) (1979)Google Scholar
  15. Seco, L.A.: Computer assisted lower bounds for atomic energies, in Mayer and Schmidt (1991) (1991) pp 241–251Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Oscar E. LanfordIII
    • 1
  1. 1.Mathematics DepartmentETH-ZürichZürichSwitzerland

Personalised recommendations