Efficient unidimensional universal cellular automaton

  • Bruno Martin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 629)


In this paper we present an intrinsically universal one dimensional cellular automaton. By intrinsic, we mean that it does not simulate a universal Turing machine, which is a well-known result, but it simulates any other cellular automaton on any input. We thus improve the complexities in time and in space of the intrinsically universal cellular automaton of J. Albert and K. Culik, and we give notions of what a parallel computation is for one dimensional cellular automata.


Cellular Automaton Turing Machine Initial Configuration Recursive Function Universal Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jürgen Albert and Karel Culik II. A simple universal cellular automaton and its one-way and totalistic version. Complex Systems, 1:1–16, 1987.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Manuel Blum. A machine independant theory of the complexity of recursive functions. JACM, 14:322–336, 1967.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    C. Choffrut and K. Culik II. On real time cellular automata and trellis automata. Acta Inform, 10:393–407, 1984.MathSciNetGoogle Scholar
  4. [4]
    Alvin Ray Smith III. Real-time language recognition by one-dimensional cellular automata. Journal of Computer and System Sciences, 6:233–253, 1971.Google Scholar
  5. [5]
    Alvin Ray Smith III. Simple computation-universal cellular spaces. Journal ACM, 18:339–353, 1971.zbMATHCrossRefGoogle Scholar
  6. [6]
    Kristian Lindgren and Mats G. Nordhal. Universal computation in simple one-dimensional cellular automata. Complex Systems, 4:299–318, 1990.zbMATHMathSciNetGoogle Scholar
  7. [7]
    M. Machtey and P. Young. An introduction to the general theory of algorithms. Theory of computation series, North Holland, 1978.Google Scholar
  8. [8]
    Bruno Martin. Intrinsic universal computation of one dimensional cellular automata. In Center for Scientific Computing Helsinki, editor, Workshop on Cellular Automata, April 1991.Google Scholar
  9. [9]
    Bruno Martin. A universal cellular automaton in quasi-linear time and its S-m-n form. Research report 91-21, Laboratoire de l'informatique du Parallélisme, 1991. Submitted to Theoretical Computer Science.Google Scholar
  10. [10]
    R. Sommerhadler and S.C. van Westrhenen. The Theory of Computability, Programs, Machines, Effectiveness and Feasibility. Addison Wesley, 1988.Google Scholar
  11. [11]
    Stephen Wolfram. Universality and complexity in cellular automata. Physica D, 10:1–35, 1984.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Bruno Martin
    • 1
  1. 1.Laboratoire de l'Informatique du ParallélismeEcole Normale Supérieure de LyonLyon Cedex 07France

Personalised recommendations