The shuffle exchange network has a Hamiltonian path

  • Rainer Fdelmann
  • Peter Mysliwietz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 629)


The problem to determine whether a network contains a Hamiltonian path has been a. fundamental problem in graph theory. We prove the existence of a Hamiltonian path in the Shuffle Exchange network SX(n). This problem has been posed as an open problem by Leighton in [8] and Samatham and Pradhan in [11].


Hamiltonian Path Gray Code Block Number Block Versus Cycle Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fred Annexstein, Marc Baumslag, Arnold L. RosenbergGroup Action Graphs and Parallel Architectures. SIAM Journal of Computing, Vol 19, No 3, pp 554–569, (1990)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hans L. BodlaenderThe Classification of Coverings of Processor Networks. Journal of Parallel and Distributed Computing 6, pp 166–182, (1989)CrossRefGoogle Scholar
  3. 3.
    N. G. de BruijnA Combinatorial Problem. Indagationes Math. 8, pp 461–467, (1946)zbMATHGoogle Scholar
  4. 4.
    Rainer Feldmann, Walter UngerThe Cube-Connected Cycles Network is a Subgraph of the Butterfly Network. submitted to Parallel Processing Letters, (1991)Google Scholar
  5. 5.
    Rainer Feldmann, Peter Mysliwietz, Stefan TschökeThe Shuffle Exchange Network of Dimension2Has a Hamiltonian Path. unpublished manuscript, 1991Google Scholar
  6. 6.
    E. N. GilbertGray Codes and Paths on then-Cube. Bell System Technical Journal 37, pp 815–826, (1957)Google Scholar
  7. 7.
    Ronald J. GouldUpdating the Hamiltonian Problem — A Survey. Journal of Graph Theory, vol. 15, no. 2, pp 121–157, (1991)zbMATHMathSciNetGoogle Scholar
  8. 8.
    F. Thomson LeightonIntroduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes Morgan Kaufmann Publishers, Chapter 3, page 509, (1991)Google Scholar
  9. 9.
    Burkhard Monien, Hal SudboroughComparing Interconnection Networks. MFCS 88, pp 138–153, (1988)MathSciNetGoogle Scholar
  10. 10.
    Franco P. Preparata, J. VuilleminThe Cube-Connected-Cycles. A Versatile Network for Parallel Computation. IEEE FOCS vol. 20, pp140–147, (1979)Google Scholar
  11. 11.
    Maheswara R. Samatham, Dhiraj K. Pradhan The DeBruijn Multiprocessor Network: A Versatile Parallel Processing and Sorting Network for VLSI. IEEE Transactions on Computers vol. 20, no. 4, pp 567–581, (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Alan M. Schwartz, Michael C. LouiDictionary Machines on Cube-Class Networks. IEEE Transactions on Computers vol. C-36, no. 1, pp 100–105, (1987)CrossRefGoogle Scholar
  13. 13.
    Harold S. StoneParallel Processing with the Perfect Shuffle. IEEE Transactions on Computers vol. C-20, no. 2, pp 153–161, (1971)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Rainer Fdelmann
    • 1
  • Peter Mysliwietz
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of PaderbornGermany

Personalised recommendations