# The complexity of graph connectivity

Invited Lectures

First Online:

## Abstract

In this paper we survey the major developments in understanding the complexity of the graph connectivity problem in several computational models, and highlight some challenging open problems.

## Keywords

Boolean Function Turing Machine Input Graph Universal Sequence Circuit Class
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- [A1]M. Ajtai,
*On the complexity of the pigeonhole principle*, Proc. of the 29th FOCS, pp. 346–355, 1988.Google Scholar - [A2]M. Ajtai,
*First-order definability on finite structures*, Annals of Pure and Applied Logic, 45, pp. 211–225, 1989.zbMATHMathSciNetCrossRefGoogle Scholar - [AB]M. Ajtai and M. Ben-Or,
*A theorem on probabilistic constant-depth computation*, Proc. of the 16th STOC, pp. 471–474, 1984.Google Scholar - [AF]M. Ajtai and R. Fagin,
*Reachability is harder for directed than for undirected finite graphs*, The journal of Symbolic Logic, Vol 55, No 1, pp. 113–150, 1990.zbMATHMathSciNetCrossRefGoogle Scholar - [AKS]M. Ajtai, J. Komlos, E. Szemeredi,
*Deterministic simulation in logspace*, Proc. of the 19th STOC, pp. 132–140, 1987.Google Scholar - [AK+]R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, C. Rackoff,
*Random walks, universal traversal sequences, and the complexity of maze problems*, Proc. of the 20th FOCS, pp. 218–223, 1979.Google Scholar - [BeSi]P. Berman and J. Simon,
*Lower bounds for graph threading by probabilistic machines*, Proc. of the 24th FOCS, pp. 304–311, 1983.Google Scholar - [Bo]B. Bollobas, Extremal Graph Theory, Academic Press, 1978.Google Scholar
- [BBRS]G. Barnes, J. F. Buss, W. L. Ruzzo and B. Schieber,
*A sublinear space, polynomial time algorithm for directed s-t connectivity*, Technical report 92-03-05, Dept. of Computer Science, University of Washington, 1992.Google Scholar - [BC+]A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo and M. Tompa,
*Two applications of inductive counting for complementation problems*, SIAM J. on Computing, Vol 18, pp. 559–578, 1989.zbMATHMathSciNetCrossRefGoogle Scholar - [BI+]P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, P. Pudlak and A. Woods,
*Exponential lower bounds for the pigeonhole principle*, Proc. of the 24th STOC, pp. 200–220.Google Scholar - [BM]M. Blum and S. Micali,
*How to generate cryptographically strong sequences of pseudo-random bits*, SIAM J. on Computing, 13, 4, pp. 850–864, 1984.MathSciNetCrossRefGoogle Scholar - [BNS]L. Babai, N. Nisan and M. Szegedy,
*Multi-party protocols and logspacehard pseudo-random sequences*, Proc. of the 21st STOC, pp.1–11, 1989.Google Scholar - [BR]G. Barnes and W. L. Ruzzo,
*Deterministic algorithms for undirected st-connectivity using polynomial time and sublinear space*, Proc. 23rd STOC, pp. 43–53, 1991.Google Scholar - [BS]R. Boppana and M. Sipser,
*The complexity of finite functions*, Handbook of Theoretical Compluter Science, Vol. A, van Leeuwen (ed.), MIT Press/Elsvier, pp. 759–804, 1990.Google Scholar - [CaWe]L. Carter and M. Wegman,
*Universal hash functions*, J. of Computer Systems and Sciences, 18, 2, pp. 143–154, 1979.zbMATHMathSciNetCrossRefGoogle Scholar - [Co]S. A. Cook,
*A taxonomy of problems with fast parallel algorithms*, Information and Computation, 64, pp. 2–22, 1985.zbMATHGoogle Scholar - [CW]A. Cohen and A. Wigderson,
*Dispersers, deterministic amplification and weak random sources*, Proc. of the 30th FOCS, pp. 14–19, 1989.Google Scholar - [CoWi]D. Coppersmith and S. Winograd,
*Matrix multiplication via arithmetic progressions*, Proc. of the 19th STOC, pp. 1–6, 1987.Google Scholar - [CFL]A. Chandra, M. Furst and R. J. Lipton,
*Multi-party protocols*, Proc. of the 15th STOC, pp. 94–99, 1983.Google Scholar - [CKR]M. Chrobak, H. Karloff, T. Radzik,
*Connectivity vs. reachability*, Information and Computation, Vol 91, No 2, pp. 177–188, 1991.zbMATHMathSciNetCrossRefGoogle Scholar - [CM]S. Cook and P. McKenzie, manuscript, 1986.Google Scholar
- [cr]1992Springer-VerlagS. A. Cook and C. W. Rackoff,
*Space lower bounds for maze threadability on restricted machines*, SIAM J. on Computing, Vol 9, No 3, pp. 636–652, 1980.zbMATHMathSciNetCrossRefGoogle Scholar - [E]H. B. Enderton, A Mathematical Introduction to Logic, Academic Press, 1972.Google Scholar
- [Eh]A. Ehrenfeucht,
*An application of games to the completeness problem for formalized theories*, Fund. Math., 49, pp. 129–141, 1961.zbMATHMathSciNetGoogle Scholar - [Fa]R. Fagin,
*Monadic generalized spectra*, Seitschrift fur Mathematische Logik und Grundlagen der Mathematik, Vol 21, pp. 89–96, 1975.zbMATHMathSciNetGoogle Scholar - [Fr]R. Fraisse,
*Sur les classifications des systems de relations*, Publications Scientifiques de l'Université d'Alger, Vol 1. pp. 35–182, 1954.MathSciNetGoogle Scholar - [FSS]M. Furst, J. Saxe and M. Sipser,
*Parity, circuits and the polynomial-time hierarchy*, Math System Theory 17, pp. 13–27, 1984.zbMATHMathSciNetCrossRefGoogle Scholar - [GS1]M. Grigni and M. Sipser,
*Monotone complexity*, Proceedings of LMS workshop on Boolean function complexity, Durham, M. Paterson (Ed.), Cambridge University Press, 1990.Google Scholar - [GS2]M. Grigni and M. Sipser,
*Monotone separation of Logspace from NC*^{1}, Proc. of the 6th Structures in Complexity Theory conference, pp. 294–298, 1991.Google Scholar - [H]J. Hastad, Computational limitations of small-depth circuits, The MIT Press, 1987.Google Scholar
- [Is]S. Istrail,
*Polynomial traversing sequences for cycles are constructible*, Proc. of the 20th STOC, pp. 491–503, 1988.Google Scholar - [I1]N. Immerman,
*Descriptive and computational complexity*, Computational Complexity Theory, J. Hartmanis (Ed.), Proc. Symp. Applied Math. 38, American Mathematical Society, pp. 75–91, 1989.Google Scholar - [I2]N. Immerman,
*Nondeterministic space is closed under complementation*, SIAM J. on Computing, 17, pp. 935–938, 1988.zbMATHMathSciNetCrossRefGoogle Scholar - [I3]R. Implagliazzo and D. Zuckerman,
*How to recycle random bits*, Proc. of the 30th FOCS, pp. 248–253, 1989.Google Scholar - [J]D. Johnson,
*A catalog of complexity classes*, Handbook of Theoretical Compluter Science, Vol. A, van Leeuwen (ed.), MIT Press/ Elsvier, pp. 67–162, 1990.Google Scholar - [Ka]P. Kanellakis, Private communication, 1986.Google Scholar
- [KSS]J. Kahn, M. Saks, D. Sturtevant,
*A topological approach to evasiveness*, Combinatorica 4, pp. 297–306, 1984.zbMATHMathSciNetGoogle Scholar - [KW]M. Karchmer and A. Wigderson,
*Monotone circuits for connectivity require super-logarithmic depth*, SIAM J. on Discrete Mathematics, Vol 3, No 2. pp. 255–265, 1990.zbMATHMathSciNetCrossRefGoogle Scholar - [LP]H. Lewis and C. Papadimitriu,
*Symmetric space-bounded computation*, Theoretical Computer Science 25, pp. 130–143, 1982.Google Scholar - [N1]N. Nisan,
*Pseudo-random generators for space-bounded computation*, Proc. of the 22nd STOC, pp. 204–212, 1990.Google Scholar - [N2]N. Nisan,
*RL ∈ SC*, Proc. of the 24th STOC, pp. 619–623, 1992.Google Scholar - [NN]J. Naor and M. Naor,
*Small-bias probability spaces: efficient constuctions and applications*, Proc. of the 22nd STOC, pp. 213–223, 1990.Google Scholar - [NSW]N. Nisan, E. Szemeredi and A. Wigderson,
*Undirected connectivity in*O(log1.5*n*)*space*, submitted to FOCS '92.Google Scholar - [NW]N. Nisan and A. Wigderson,
*Hardness vs. Randomness*, Proc. of the 29th FOCS, pp. 2–12, 1988.Google Scholar - [RW1]R. Raz and A. Wigderson,
*Probabilistic communication complexity of Boolean relations*, Proc. of the 30th FOCS, pp. 562–567, 1989.Google Scholar - [RW2]R. Raz and A. Wigderson,
*Monotone circuits for matching require linear depth*, Proc. of the 22nd STOC, pp. 287–292, 1990.Google Scholar - [Re]J. H. Reif,
*Symmetric complementation*, Proc. of the 14th STOC, pp. 201–214, 1982.Google Scholar - [S]R. Szelepcsenyi,
*The method of forcing for nondeterministic automata*, Bull. of the European Ass. of Theoretical Computer Science, 33, pp. 96–100, 1987.zbMATHGoogle Scholar - [Sa]W. Savitch,
*Relashionships between nondeterministic and deterministic tape complexities*, Journal of Computer Systems and Sciences, 4, pp. 177–192, 1970.zbMATHMathSciNetGoogle Scholar - [SV]S. Skyum and L. Valiant,
*A complexity theory based on Boolean algebra*, Proc. of the 22nd FOCS, pp. 244–253, 1981.Google Scholar - [T]M. Tompa,
*Two familiar transitive closure algorithms which admit no polynomial time, sublinear space implementations*, SIAM J. on Computing, 11, 1, pp. 130–137, 1982.zbMATHMathSciNetCrossRefGoogle Scholar - [Y1]A. C. Yao,
*Some complexity questions related to distributive computing*, Proc. of the 11th STOC, pp. 209–213, 1979.Google Scholar - [Y2]A. C. Yao, Private communication.Google Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 1992