Skip to main content

Determining DNA sequence similarity using maximum independent set algorithms for interval graphs

  • Conference paper
  • First Online:
Algorithm Theory — SWAT '92 (SWAT 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 621))

Included in the following conference series:

Abstract

Motivated by the problem of finding similarities in DNA and amino acid sequences, we study a particular class of two dimensional interval graphs and present an algorithm that finds a maximum weight “increasing” independent set for this class. Our class of interval graphs is a subclass of the graphs with interval number 2. The algorithm we present runs in O(n log n) time, where n is the number of nodes, and its implementation provides a practical solution to a common problem in genetic sequence comparison.

Supported by NSF Presidential Young Investigator Grant DCR-8451387.

Partially supported by FAPESP, Brazil, under grant 87/0197-2.

Supported by Wisconsin Alumini Research Foundation and by National Science Foundation under grant CCR-9024516

This article was processed using the LaTEX macro package LLNCS style

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

    Google Scholar 

  2. Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman. A basic local alignment search tool. J. Mol. Biol., 215, 1990.

    Google Scholar 

  3. Alan A. Bertossi and Alessandro Gori. Total domination and irredundance in weighted interval graphs. SIAM J. Disc. Math., 1(3):317–327, 1988.

    Google Scholar 

  4. Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

    Google Scholar 

  5. Osamu Gotoh. Optimal sequence alignment allowing for long gaps. Bull. Math. Biol., 52(3):359–373, 1990.

    Google Scholar 

  6. U. I. Gupta, D. T. Lee, and J. Y.-T. Leung. Efficient algorithms for interval graphs and circular-arc graphs. Networks, 12:459–467, 1982.

    Google Scholar 

  7. Steven Henikoff, James C. Wallace, and Joseph P. Brown. Finding protein similarities with nucleotide sequence databases. In Russell F. Doolittle, editor, Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences, volume 183 of Methods in Enzymology, pages 111–132. Academic Press, 1990.

    Google Scholar 

  8. Xiaoqiu Huang, Ross C. Hardison, and Webb Miller. A space-efficient algorithm for local similarities. Comput. Applic. Biosci., 6(4):373–381, 1990.

    Google Scholar 

  9. Eric Lander, Jill P. Mesirov, and Washington Taylor. Study of protein sequence comparison metrics on the connection machine CM-2. J. Supercomp., pages 255–269, 1989.

    Google Scholar 

  10. D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity search. Science, 227:1435–1441, 1985.

    PubMed  Google Scholar 

  11. J. Maizel and R. Lenk. Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc. Nat. Acad. Sci. USA, 78:7665–7669, 1981.

    Google Scholar 

  12. Hugo M. Martinez. An efficient method for finding repeats in molecular sequences. Nucleic Acids Research, 11(13):4629–4634, 1983.

    Google Scholar 

  13. Webb Miller and Eugene W. Myers. Sequence comparison with concave weighting functions. Bull. Math. Biol., 50(2):97–120, 1988.

    Google Scholar 

  14. Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443–s453, 1970.

    PubMed  Google Scholar 

  15. William R. Pearson and David J. Lipman. Improved tools for biological sequence comparison. Proc. Nat. Acad. Sci. USA, 85:2444–2448, 1988.

    Google Scholar 

  16. Jude Shavlik. Finding genes by case-based reasoning in the presence of noisy case boundaries. In Proc. DARPA Cased-Based Reasoning Workshop, pages 327–338, Washington, DC, 1991.

    Google Scholar 

  17. T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. J. Mol. Biol., 147:195–197, 1981.

    PubMed  Google Scholar 

  18. T. F. Smith, M. S. Waterman, and W. M. Fitch. Comparative biosequence metrics. J. Molec. Evol., 18:38–46, 1981.

    Google Scholar 

  19. William T. Trotter, Jr. and Frank Harary. On double and multiple interval graphs. J. Graph Theory, 3:205–211, 1979.

    Google Scholar 

  20. M. S. Waterman and J. R. Griggs. Interval graphs and maps of DNA. Bull. Math. Biol., 48(2):189–195, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Otto Nurmi Esko Ukkonen

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joseph, D., Meidanis, J., Tiwari, P. (1992). Determining DNA sequence similarity using maximum independent set algorithms for interval graphs. In: Nurmi, O., Ukkonen, E. (eds) Algorithm Theory — SWAT '92. SWAT 1992. Lecture Notes in Computer Science, vol 621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55706-7_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-55706-7_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55706-7

  • Online ISBN: 978-3-540-47275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics