Skip to main content

Electronic and atomic structure of simple-metal clusters: Beyond the spherical jellium model

  • 4. Structure and Excitation
  • Conference paper
  • First Online:
Nuclear Physics Concepts in the Study of Atomic Cluster Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 404))

Abstract

The ground-state atomic and electronic structure of simple-metal clusters is studied by minimizing the total cluster energy using the density functional formalism. The geometrical structure of the cluster is taken into account in an approximate way by replacing the total (three-dimensional) external potential of the ions by its spherical average around the cluster center when solving the Kohn-Sham equations of density functional theory. When combined with the technique of simulated annealing to find the global minimum in the energy hypersurface, the procedure represents an approximate but very effective approach beyond the spherical jellium model for studying atomic and electronic shell effects, form-isomers and cluster stability. Results are shown for Na- and Cs-clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.R. Hoare and J.A. McInnes, Adv. Phys. 32, 791 (1983).

    Google Scholar 

  2. L.T. Wille and J. Vennik, J. Phys. A 18, L419 (1985).

    Google Scholar 

  3. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Google Scholar 

  4. W.A. De Heer, W.D. Knight, M.Y. Chou, and M.L. Cohen, Solid State Phys. 40, 93 (1987).

    Google Scholar 

  5. M.E. Spina and M. Brack, Z. Phys. D 17, 225 (1990).

    Google Scholar 

  6. M.P. Irriguez, M.J. López, J.A. Alonso, and J.M. Soler, Z. Phys. D 11, 163 (1989).

    Google Scholar 

  7. N.W. Ashcroft, Phys. Lett. 23, 48 (1966).

    Google Scholar 

  8. M. Manninen, Phys. Rev. B 34, 6886 (1986).

    Google Scholar 

  9. S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecci, Science 220, 671 (1983).

    Google Scholar 

  10. C. Meyer, Diploma thesis, Universität Osnabrück, 1991

    Google Scholar 

  11. P. Ballone, W. Andreoni, R. Car, and M. Parrinello, Europhys. Lett. 8, 73 (1989).

    Google Scholar 

  12. U. Lammers, G. Borstel, A. Mañanes and J.A. Alonso, Z. Phys. D 17, 203 (1990).

    Google Scholar 

  13. S. Bjørnholm, J. Borggren, O. Echt, K. Hansen, J. Pedersen, and H.D. Rasmussen, Phys. Rev. Lett. 65, 1627 (1990).

    Google Scholar 

  14. H.G. Limberger and T.P. Martin, Z. Phys. D 12, 439 (1989).

    Google Scholar 

  15. N.D. Bhaskar, C.M. Klimcak, and R.A. Cook, Phys. Rev. B 42, 9147 (1990).

    Google Scholar 

  16. U. Lammers, A. Mañanes, G. Borstel, and J.A. Alonso, Solid State Commun. 71, 591 (1989).

    Google Scholar 

  17. M.J. López, A. Mañanes, J.A. Alonso, and M.P. Iñiguez, Z. Phys. D 12, 237 (1989).

    Google Scholar 

  18. A. Mañanes, M.P. Irriguez, M.J. López, and J.A. Alonso, Phys. Rev. B 42, 5000 (1990).

    Google Scholar 

  19. M.J. López, M.P. Irriguez, and J.A. Alonso, Phys. Rev. B 41, 5636 (1990).

    Google Scholar 

  20. M.P. Iñiguez, J.A. Alonso, A. Rubio, M.J. López, and L.C. Balbas, Phys. Rev. B 41, 5595 (1990).

    Google Scholar 

  21. J. Robles, M.P. I~niguez, J.A. Alonso, and A. Mañanes Z. Phys. D 13, 269 (1989).

    Google Scholar 

  22. T. Bergmann, H.G. Limberger, and T.P. Martin, Phys. Rev. Lett. 60, 1767 (1988), and private communication

    Google Scholar 

  23. G. Apai, J.F. Hamilton, J. Stöhr, and A. Thompson, Phys. Rev. Lett. 43, 165 (1979).

    Google Scholar 

  24. P.A. Montano, J. Zhao, M. Ramanathan, G.K. Shenoy, and W. Schulze, Z. Phys. D 12, 103 (1989).

    Google Scholar 

  25. P.A. Montano, J. Zhao, M. Ramanathan, G.K. Shenoy, W. Schulze, and J. Urban, Chem. Phys. Lett. 164, 126 (1989).

    Google Scholar 

  26. L.B. Hansen, P. Stoltze, J.K. Nørskov, B.S. Clausen, and W. Niemann, Phys. Rev. Lett. 64, 3155 (1990).

    Google Scholar 

  27. M.Ya. Gamarnik, Phys. Stat. Sol.(b) 160, K1 (1990).

    Google Scholar 

  28. M. Sigalas, N.C. Bacalis, D.A. Papaconstantopoulos, M.J. Mehl, and A.C. Switendick, Phys. Rev. B 42, 11637 (1990).

    Google Scholar 

  29. A. Mañanes, J.A. Alonso, U. Lammers, and G. Borstel, Phys. Rev. B 44, 7273 (1991).

    Google Scholar 

  30. M.D. Glossman, M.P. Irriguez, and J.A. Alonso, Z. Phys. D (in print).

    Google Scholar 

  31. H. Göhlich, T. Lange, T. Bergmann, and T.P. Martin, Phys. Rev. Lett. 65, 748 (1990).

    Google Scholar 

  32. T. Lange, H. Göhlich, T. Bergmann, and T.P. Martin, Z. Phys. D 19, 113 (1991).

    Google Scholar 

  33. T.P. Martin, T. Bergmann, H. Göhlich, and T. Lange, Chem. Phys. Lett. 172, 209 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rüdiger Schmidt Hans O. Lutz Reiner Dreizler

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Borstel, G., Lammers, U., Mañanes, A., Alonso, J.A. (1992). Electronic and atomic structure of simple-metal clusters: Beyond the spherical jellium model. In: Schmidt, R., Lutz, H.O., Dreizler, R. (eds) Nuclear Physics Concepts in the Study of Atomic Cluster Physics. Lecture Notes in Physics, vol 404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55625-7_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-55625-7_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55625-1

  • Online ISBN: 978-3-540-47264-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics