Skip to main content

Collective excitations in large metal clusters

  • 4. Structure and Excitation
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 404))

Abstract

Studies of the evolution of the optical properties of metal clusters as a function of size have gained considerable attention in the last few years. One theoretical approach starts from large metal clusters, which can be described by classical electrodynamics, provided the dielectric functions of the clusters are known. the resulting resonant features in the absorption spectra are commonly called surface plasmons and are collective excitations of the electron system.The present paper discusses the electrodynamic (Mie) theory for large clusters of different metals, also considering the range of validity of this approach towards smaller cluster sizes. More details can be found in an extended review on this topic which is to be published soon [1].

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Vollmer, U. Kreibig, Optical Properties of Metal Clusters, Springer Ser. Mat. Sci., to be published

    Google Scholar 

  2. G. Mie, Ann. Phys. 25, 377 (1908)

    Google Scholar 

  3. M. Kerker, The Scattering of Light, Academic Press (1969)

    Google Scholar 

  4. C. F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles Wiley 1983

    Google Scholar 

  5. U. Kreibig, P. Zacharias, Z. Phys. 231, 128 (1970)

    Google Scholar 

  6. U. Kreibig, B. Schmitz, H.D. Breuer, Phys. Rev. B 36, 5027 (1987)

    Google Scholar 

  7. H. Ehrenreich, H.R. Philipp, Phys. Rev. 128, 1622 (1962)

    Google Scholar 

  8. P.O. Nilsson, Solid State Physics 29, 139 (1974)

    Google Scholar 

  9. J.H. Weaver, C. Krafka, D.W. Lynch, E.E. Koch, Physics Data: Optical Properties of Metals, Parts 1,2, Fachinformationszentrum Karlsruhe, FRG (1981)

    Google Scholar 

  10. T Inagaki, L.C. Emerson, E.T. Arakawa, M.W. Wiliams, Phys. Rev. B 13, 2305 (1976)

    Google Scholar 

  11. U. Kreibig, Appl. Phys. 10, 255 (1976)

    Google Scholar 

  12. W. Hoheisel, U. Schulte, M. Vollmer, F. Träger, Appl. Phys. A 51, 271 (1990)

    Google Scholar 

  13. Dissertation W. Hoheisel, Heidelberg (1991), also: W. Hoheisel, T Götz, F. Träger, M. Vollmer, to be published

    Google Scholar 

  14. U. Kreibig, C.v. Fragstein, Z. Phys. 224, 307 (1969)

    Google Scholar 

  15. U. Kreibig, Z. Phys. 234, 307 (1970)

    Google Scholar 

  16. U. Kreibig, L. Genzel, Surf. Sci. 156, 678 (1985)

    Google Scholar 

  17. W. Ekardt, Phys. Rev. Lett. 52, 1925 (1984); Phys. Rev. B 31, 6360 (1985)

    Google Scholar 

  18. M.A. Smithard, M.Q. Tran, Helv. Phys. Acta 46, 869 (1974)

    Google Scholar 

  19. L. Genzel, T. P. Martin, U. Kreibig, Z. Phys. B 21, 339 (1975)

    Google Scholar 

  20. H. Abe, W. Schulze, B. Tesche, Chem. Phys. 47, 95 (1980)

    Google Scholar 

  21. U. Kreibig, K. Fauth, C.-G. Granqvist, G. Schmid, Z. Phys. Chem. NF 169, 11 (1990)

    Google Scholar 

  22. W.A. de Heer, K. Selby, V. Kresin, J. Masui, M. Vollmer, A. Châtelain, W. D. Knight, Phys. Rev. Lett. 59, 1805 (1987); also Phys. Rev. B 40, 5417 (1989); 43, 4565 (1991)

    Google Scholar 

  23. C.R. Wang, S. Pollack, M.M. Kappes, Chem. Phys. Lett. 166, 26 (1990); also J. Chem. Phys. 93, 3787 (1990); J. Chem. Phys. 94, 2496 (1991)

    Google Scholar 

  24. C. Bréchignac, P. Cahuzac, F. Charlier, J. Leygnier, Chem. Phys. Lett. 164, 433 (1989); also Phys. Rev. Lett., submitted

    Google Scholar 

  25. H. Fallgren, T.P. Martin, Chem. Phys. Lett. 168, 233 (1990); Z. Phys. D 19, 81 (1991)

    Google Scholar 

  26. J. Blanc, M. Broyer, J. Chevaleyre, Ph. Dugourd, H. Kühling, P. Labastie, M. Ulbricht, J.P. Wolf, L. Wöste, Z. Phys. D19, 7 (1991); also Phys. Rev. Lett. 67, 2638 (1991)

    Google Scholar 

  27. J. Tiggesbäumker, L. Köller, H.O. Lutz, K.H. Meiwes-Broer, Chem. Phys. Lett., in press; also contribution in The Physics and Chemistry of Finite Systems: From Clusters to Crystals, Eds.: P Jena, S. Khanna, B. Rao, Nato Asi Series B, in press

    Google Scholar 

  28. K. Rademann, submitted to Phys. Rev. Lett.; also: p. 45 in Symposium on Atomic and Surface Physics, T.D. Märk, F. Howorka (Eds.), Studia, Innsbruck (1990)

    Google Scholar 

  29. V. Bonačić-Koutecký, P. Fantucci, J. Koutecky, Chem. Rev. 91, 1035 (1991)

    Google Scholar 

  30. K. Rademann, Ber. Bunsenges. Phys. Chem. 93, 653 (1989)

    Google Scholar 

  31. U. Kreibig, in Growth and Properties of Metal Clusters, Ed.: J. Bourdon, Elsevier (1980)

    Google Scholar 

  32. J.H. Parks, S.A. McDonald, Phys. Rev. Lett. 62, 2301 (1989)

    Google Scholar 

  33. W. Hoheisel, K. Jungmann, M. Vollmer, R. Weidenauer, F. Träger, Phys. Rev. Lett. 60, 1649 (1988); see also Appl. Phys. A 52, 445 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rüdiger Schmidt Hans O. Lutz Reiner Dreizler

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Vollmer, M., Kreibig, U. (1992). Collective excitations in large metal clusters. In: Schmidt, R., Lutz, H.O., Dreizler, R. (eds) Nuclear Physics Concepts in the Study of Atomic Cluster Physics. Lecture Notes in Physics, vol 404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55625-7_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-55625-7_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55625-1

  • Online ISBN: 978-3-540-47264-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics