Skip to main content

A survey of recognizable languages of infinite traces

  • Conference paper
  • First Online:
Advances in Petri Nets 1992

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 609))

  • 144 Accesses

Abstract

A. Mazurkiewicz [Maz77] defined traces in order to represent non-sequential processes. In order to describe non-sequential processes which never terminate, e.g. distributed operating systems, the notion of infinite traces is needed. The aim of this survey is to present in a uniform way the results on recognizable infinite trace languages stated in [Gas91], [GPZ91] and [DGP91]. The proofs of the presented results are not proposed here but can be found in the original papers.

This work has been partly supported by the ESPRIT Basic Research Action N0 3148 (DEMON).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. ARNOLD, “A syntactic congruence for rational Ω-languages”, Theoretical Computer Science 39, p. 333–335, 1985.

    Google Scholar 

  2. I.J. AALBERSBERG and G. ROZENBERG, “Theory of traces”, Theoretical Computer Science 60, p. 1–82, 1988.

    Google Scholar 

  3. E. BEST and R. DEVILLERS, “Sequential and concurrent behaviour in Petri Net theory”, Theoretical Computer Science 55, p. 87–136, 1987.

    Google Scholar 

  4. P. BONIZZONI, G. MAURI and G. PIGHIZZINI, “About infinite traces”, Proceedings of the ASMICS Workshop on Partially Commutative Monoids, Tech. Rep. TUM-I 9002, Technische Universität München, p. 1–10, 1989.

    Google Scholar 

  5. P. CARTIER and D. FOATA, “Problèmes combinatoires de commutation et réarrangements”, Lecture Notes in Mathematics 85, 1969.

    Google Scholar 

  6. R. CORI and Y. METIVIER, “Recognizable subsets of some partially abelian monoids”, Theoretical Computer Science 35, p. 179–189, 1985.

    Google Scholar 

  7. R. CORI, Y. METIVIER and W. ZIELONKA, “Asynchronous mappings and asynchronous cellular automata”, Tech. Rep. 89-97, LaBRI, Université de Bordeaux, France, 1989.

    Google Scholar 

  8. R. CORI and D. PERRIN, “Automates et commutations partielles”, RAIRO Theoretical Informatics and Applications 19, p. 21–32, 1985.

    Google Scholar 

  9. V. DIEKERT, P. GASTIN, A. PETIT, “Recognizable complex trace languages”, MFCS'91, Lecture Notes in Computer Science 520, p. 131–140, 1991. Also available as Technical Report, LRI, Université de Paris-Sud, France.

    Google Scholar 

  10. V. DIEKERT, “Combinatorics on traces”, Lecture Notes in Computer Science 454, 1990.

    Google Scholar 

  11. V. DIEKERT, “On the concatenation of infinite traces”, STACS'91, Lecture Notes in Computer Science 480, p. 105–117, 1991.

    Google Scholar 

  12. W. EBINGER, “On logical definability of infinite trace languages”, Proceedings of the ASMICS Workshop on Infinite Traces, to appear as Tech. Rep., Universität Stuttgart, 1992.

    Google Scholar 

  13. S. EILENBERG, “Automata, Languages and Machines”, Academic Press, New York, 1974.

    Google Scholar 

  14. M. FLIESS, “Matrices de Hankel”, J. Math. pures et appl. 53, p. 197–224, 1974.

    Google Scholar 

  15. M.P. FLE and G. ROUCAIROL, “Maximal serializability of iterated transactions”, Theoretical Computer Science 38, p. 1–16, 1985.

    Google Scholar 

  16. P. GASTIN, “Un modèle asynchrone pour les systèmes distribués”, Theoretical Computer Science 74, p. 121–162, 1990.

    Google Scholar 

  17. P. GASTIN, “Infinite traces”, Proceedings of the Spring School of Theoretical Computer Science on “Semantics of concurrency”, Lecture Notes in Computer Science 469, 1990.

    Google Scholar 

  18. P. GASTIN, “Recognizable and rational languages of finite and infinite traces”, STACS'91, Lecture Notes in Computer Science 480, p. 89–104, 1991.

    Google Scholar 

  19. P. GASTIN, A. PETIT, W. ZIELONKA, “A Kleene theorem for infinite trace languages”, ICALP'91, Lecture Notes in Computer Science 510, p. 254–266, 1991. Also available as Technical Report, LRI, Université de Paris-Sud, France.

    Google Scholar 

  20. P. GASTIN and A. PETIT, “Asynchronous cellular automata for infinite traces”, ICALP'92, Proceedings to appear in Lecture Notes in Computer Science. Also available as Tech. Rep. 91-68, LITP, Université Paris 6, France, 1991.

    Google Scholar 

  21. R. L. GRAHAM, “Rudiments of Ramsey theory “, Regional conference series in mathematics 45, 1981.

    Google Scholar 

  22. P. GASTIN and B. ROZOY, “The Poset of infinitary traces”, to appear in Theoretical Computer Science, also available as Technical Report 91-07, LITP, Université Paris 6, France, 1991.

    Google Scholar 

  23. M.Z. KWIATKOWSKA, “A metric for traces”, Information and Processing Letters 35, p. 129–135, 1990.

    Google Scholar 

  24. M.Z. KWIATKOWSKA, “On the domain of traces and sequential composition”, CAAP'91, Lecture Notes in Computer Science 493, p. 42–56, 1991.

    Google Scholar 

  25. A. MAZURKIEWICZ, “Concurrent program Schemes and their interpretations”, Aarhus University, DAIMI Rep. PB 78, 1977.

    Google Scholar 

  26. A. MAZURKIEWICZ, “Trace theory”, Advanced Course on Petri Nets, Lecture Notes in Computer Science 255, p. 279–324, 1986.

    Google Scholar 

  27. Y. METIVIER, “On recognizable subsets in free partially commutative monoids”, ICALP'86, Lecture Notes in Computer Science 226, p. 254–264, 1986.

    Google Scholar 

  28. Y. METIVIER and B. ROZOY, “On the star operation in free partially commutative monoid”, to appear in International Journal of Foundations of Computer Science, also available as Technical Report, Université de Paris-Sud, France, January 1991.

    Google Scholar 

  29. E. OCHMANSKI, “Regular behaviour of concurrent systems”, Bulletin of EATCS 27, p. 56–67, October 1985.

    Google Scholar 

  30. E. OCHMANSKI, “Notes on a star mystery”, Bulletin of EATCS 40, p. 252–257, February 1990.

    Google Scholar 

  31. D. PERRIN, “Partial commutations”, ICALP'89, Lecture Notes in Computer Science 372, p. 637–651, 1989.

    Google Scholar 

  32. D. PERRIN and J.E. PIN, “Mots Infinis”, Tech. Rep. 91-06, LITP, Université Paris 6, France, 1991. Book to appear.

    Google Scholar 

  33. B. ROZOY, “On Traces, Partial Order Sets and Recognizability”, Proceedings of ISCIS V, Cappadocia, Turkey, 1990.

    Google Scholar 

  34. J. SAKAROVITCH, “On regular trace languages”, Theoretical Computer Science 52, p. 59–75, 1987.

    Google Scholar 

  35. W. THOMAS, “On logical definability of trace languages”, Proceedings of the ASMICS Workshop on Partially Commutative Monoids, Tech. Rep. TUM-I 9002, Technische Universität München, p. 172–182, 1989.

    Google Scholar 

  36. W. Thomas, “Automata on infinite objects”, Handbook of Theoretical Computer Science (J.V. Leeuwen, Ed.), Elsevier, Amsterdam, Vol. B, p. 135–191, 1990.

    Google Scholar 

  37. W. ZIELONKA, “Notes on finite asynchronous automata and trace languages”, RAIRO Theoretical Informatics and Applications 21, p. 99–135, 1987.

    Google Scholar 

  38. W. ZIELONKA, “Safe execution of recognizable trace languages by asynchronous automata”, Lecture Notes in Computer Science 363, p. 278–289, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Grzegorz Rozenberg

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gastin, P., Petit, A. (1992). A survey of recognizable languages of infinite traces. In: Rozenberg, G. (eds) Advances in Petri Nets 1992. Lecture Notes in Computer Science, vol 609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55610-9_179

Download citation

  • DOI: https://doi.org/10.1007/3-540-55610-9_179

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55610-7

  • Online ISBN: 978-3-540-47258-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics