Performance evaluation of parallel transaction processing in shared nothing database systems

  • Robert Marek
  • Erhard Rahm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 605)


Complex and data-intensive database queries mandate parallel processing strategies to achieve sufficiently short response times. In praxis, parallel database processing is mostly based on so-called “shared nothing” architectures entailing a physical partitioning and allocation of the database among multiple processing nodes. We examine the performance of such architectures by using a detailed simulation system. We analyse response time performance of transactions and individual database queries in single-user as well as in multi-user mode. Furthermore, we study the throughput behavior for on-line transactions. Three workload types covering a wide range of commercial applications are used for performance evaluation: the debit-credit benchmark load, synthetically generated relational queries as well as real-life workloads represented by database traces.


Processing Element Communication Overhead Object Reference Relational Query Transaction Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An85.
    Anonymous et al.: A Measure of Transaction Processing Power. Datamation, 112–118 (April 1985).Google Scholar
  2. Bo90.
    Boral, H. et al.: Prototyping Bubba: A Highly Parallel Database System. IEEE Trans. on Knowledge and Data Engineering 2, 1, 4–24 (1990).CrossRefGoogle Scholar
  3. CL89.
    Carey, M.J., Livny, M.: Parallelism and Concurrency Control Performance in Distributed Database Machines. Proc. ACM SIGMOD Conf. (1989).Google Scholar
  4. De90.
    DeWitt, D.J. et al. 1990. The Gamma Database Machine Project. IEEE Trans. on Knowledge and Data Engineering 2, 1, 44–62 (1990).CrossRefGoogle Scholar
  5. DGS88.
    DeWitt, D.J., Ghandeharizadeh, S., Schneider, D.A.: A Performance Analysis of the Gamma Database Machine. Proc. ACM SIGMOD Conf. (1988).Google Scholar
  6. EGKS90.
    Englert, S., Gray, J., Kocher, T., Shath, P.: A Benchmark of NonStop SQL Release 2 Demonstrating Near-Linear Speedup and Scale-Up on Large Databases. Proc. ACM SIGMETRICS Conf., 245–246 (1990).Google Scholar
  7. HR83.
    Härder, T., Reuter, A.: Principles of Transaction-Oriented Database Recovery. ACM Computing Surveys 15 (4), 287–317 (1983).CrossRefGoogle Scholar
  8. JTK89.
    Jenq, B.P., Twichell, B., Keller, T.: Locking Performance in a Shared Nothing Parallel Database Machine. IEEE Trans. on Knowledge and Data Engineering 1 (4) (1989).Google Scholar
  9. Ke88.
    Kersten, M. et al.: A Distributed, Main-Memory Database Machine. In: Database Machines and Knowledge Base Machines (Proc. 5th Int. Workshop on Database Machines, 1987), North-Holland, 353–369 (1988).Google Scholar
  10. Li87.
    Livny, M.: DeLab — A Simulation Laboratory. Proc. Winter Simulation Conf., 486–494 (1987).Google Scholar
  11. Li89.
    Livny, M.: DeNet Users's Guide, Version 1.5, Computer Science Department, University of Wisconsin, Madison (1989).Google Scholar
  12. Ma91.
    Marek, R.: Simulation of a Shared-Nothing System for Parallel Query Processing. Master's Thesis (in German), Univ. Kaiserslautern, Dept. of Comp. Science (1991).Google Scholar
  13. MLO86.
    Mohan, C., Lindsay, B., Obermarck, R.: Transaction Management in the R* Distributed Database Management System. ACM Trans. on Database System 11 (4), 378–396 (1986).CrossRefGoogle Scholar
  14. Ne86.
    Neches, P.M.: The Anatomy of a Database Computer — Revisited. Proc. IEEE CompCon Spring Conf., 374–377 (1986).Google Scholar
  15. ÖV91.
    Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice Hall (1991).Google Scholar
  16. Pi90.
    Pirahesh, H. et al.: Parallelism in Relational Data Base Systems: Architectural Issues and Design Approaches. In Proc. 2nd Int. Symposium on Databases in Parallel and Distributed Systems, IEEE Computer Society Press (1990).Google Scholar
  17. Ra86.
    Rahm, E.: Algorithms for efficient load control in multi-system DBMS. Angewandte Informatik 4/86 (in German), 161–169 (1986).Google Scholar
  18. SD89.
    Schneider, D.A., DeWitt, D.J.: A Performance Evaluation of Four Parallel Join Algorithms in a Shared-Nothing Multiprocessor Environment. Proc. ACM SIGMOD Conf., 110–121(1989)Google Scholar
  19. St86.
    Stonebraker, M.: The Case for Shared Nothing. IEEE Database Engineering 9 (1), 4–9 (1986).Google Scholar
  20. Ta88.
    The Tandem Performance Group: A Benchmark of NonStop SQL on the Debit Credit Transaction. Proc. ACM SIGMOD Conf., 337–341 (1988).Google Scholar
  21. Ta89.
    The Tandem Database Group: NonStop SQL, A Distributed, High-Performance, High-Availability Implementation of SQL. In Lecture Notes in Computer Science 359, Springer-Verlag, 60–104 (1989).Google Scholar
  22. TPC89.
    Transaction Processing Performance Council (TPC): TPC Benchmark A. (1989).Google Scholar
  23. WT91.
    Watson, P., Townsend, P.: The EDS Parallel Relational Database System. In: “Parallel Database Systems”, LNCS 503, Springer-Verlag, 149–168 (1991).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Robert Marek
    • 1
  • Erhard Rahm
    • 1
  1. 1.Dept. of Computer ScienceUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations