Advertisement

On embedding interconnection networks into rings of processors

  • Juraj Hromkovič
  • Vladimír Müller
  • Ondrej Sýkora
  • Imrich Vrťo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 605)

Abstract

We prove exact results on dilations in cycles for important graphs corresponding to fundamental interconnection networks of parallel computers as complete trees, hypercubes and 2- and 3-dimensional meshes. Moreover we show that trees, X-trees, n-dimensional meshes, pyramides and trees of meshes have the same dilations both in the path and the cycle.

Keywords

Assure Pyramid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.J.Atallah, S.R.Kosaraju: Optimal simulations between mesh-connected arrays of processors, J. Association for Computing Machinery, 35, 3, 1988, 635–650.Google Scholar
  2. [2]
    S.N.Bhatt, F.T.Leighton: A framework for solving VLSI graph layout problems, J. Computer and System Science, 28, 1984, 300–343.CrossRefGoogle Scholar
  3. [3]
    P.Z.Chinn, J.Chvátalová, A.K.Dewdney, N.E.Gibbs: The bandwidth problem for graphs and matrices — a survey, J. Graph Theory, 6, 1982, 223–254.Google Scholar
  4. [4]
    F.R.K.Chung: Labelings of graphs. In: Selected Topics in Graph Theory 3, (eds. L.Beineke and R.Wilson), Academic Press, 1988, 151–168.Google Scholar
  5. [5]
    J.Chvátalová: Optimal labeling of a product of two paths, Discrete Mathematics, 11, 1975, 249–253.CrossRefGoogle Scholar
  6. [6]
    J.Chvátalová, A.K.Dewdney, N.E.Gibbs, R.R.Korfhage: The bandwidth problem for graphs: a collection of recent results. Research Report No. 24, Department of Computer Science, UWO, London, Ontario, 1975.Google Scholar
  7. [7]
    C.H.FitzGerald: Optimal indexing of the vertices of graphs, Mathematics of Computation, 28, 127, 1974, 825–831.Google Scholar
  8. [8]
    F.Harary: Graph Theory, Addison Wesley Publishing Company, Reading, 1969.Google Scholar
  9. [9]
    L.H.Harper: Optimal numberings and isoperimetric problems on graphs, J. Combinatorial Theory, 1, 1966, 385–393.Google Scholar
  10. [10]
    T.H.Lai, W.White: Embeddings pyramids in hypercubes, Research Report No. 41, CISRC, OSU, Columbus, Ohio, 1987.Google Scholar
  11. [11]
    J.Y.T.Leung, O.Vornberger, D.Witthoff: On some variants of the bandwidth minimization problem, SIAM J. Computing, 13, 3, 1984, 650–667.CrossRefGoogle Scholar
  12. [12]
    Y.W.Ma, B.Narahari: Optimal mappings among interconnection networks foiperformance evaluation. In: Proceedings of the 6-th International Conference on Distributed Computing Systems, 1986, 16–25.Google Scholar
  13. [13]
    B.Monien, H.Sudborough: Embedding one interconnection network in another, Computing Supplement, 7, 1990, 257–282.Google Scholar
  14. [14]
    M.S.Paterson, H.Schröder, O.Sýkora, I.Vrto: Optimal embedding of a toroidal mesh in a path. Submitted for publication.Google Scholar
  15. [15]
    I.A.Rosenberg, L.Snyder: Bounds on the cost of data encodings, Mathematical System Theory, 12, 1978, 9–39.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Juraj Hromkovič
    • 1
  • Vladimír Müller
    • 2
  • Ondrej Sýkora
    • 3
  • Imrich Vrťo
    • 3
  1. 1.Mathematik-Informatik Universität-GHPaderbornFRG
  2. 2.Institute of MathematicsCzechoslovak Academy of SciencesPragueCSFR
  3. 3.Institute for InformaticsSlovak Academy of SciencesBratislavaCSFR

Personalised recommendations