Skip to main content

On spanning trees with low crossing numbers

  • Geometric Algorithms
  • Chapter
  • First Online:
Data structures and efficient algorithms

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 594))

Abstract

Every set S of n points in the plane has a spanning tree such that no line disjoint from S has more than O(√n) intersections with the tree (where the edges are embedded as straight line segments). We review the proof of this result (originally proved by Bernard Chazelle and the author in a more general setting), point at some methods for constructing such a tree, and describe some algorithmic and combinatorial applications.

Supported by the Deutsche Forschungsgemeinschaft, “Schwerpunktprogramm Datenstrukturen und effiziente Algorithmen”, grant We 1265/1-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boris Aronov, Paul Erdös, Wayne Goddard, Daniel Kleitman, Michael Klugerman, János Pach, and Leonard Schulman. Crossing families. In Proc. 7th Annual ACM Symposium on Computational Geometry, pages 351–356, 1991.

    Google Scholar 

  2. Pankaj Agarwal. Ray shooting and other applications of spanning trees with low stabbing number. In Proc. 5th Annual ACM Symposium on Computational Geometry, pages 315–325, 1989.

    Google Scholar 

  3. Pankaj Agarwal. Intersection and Decomposition Algorithms for Planar Arrangements. Cambridge University Press, 1991.

    Google Scholar 

  4. Noga Alon and Daniel Kleitman. Piercing convex sets and the Hadwiger Debrunner (p,q)-problem. Manuscript, 1991.

    Google Scholar 

  5. Noga Alon and Nimrod Megiddo. Parallel linear programming in fixed dimensions almost surely in constant time. In Proc. 31st Annual IEEE Symposium on Foundations of Computer Science, pages 574–582, 1990.

    Google Scholar 

  6. Pankaj Agarwal and Micha Sharir. Applications of a new space partitioning technique. Manuscript, 1991.

    Google Scholar 

  7. Pankaj Agarwal, Marc van Kreveld, and Mark Overmars. Intersection queries for curved objects. In Proc. 7th Annual ACM Symposium on Computational Geometry, pages 41–50, 1991.

    Google Scholar 

  8. József Beck and William Chen. Irregularities of Distributions. Cambridge University Press, 1987.

    Google Scholar 

  9. József Beck. Quasi-random 2-colorings of point sets. Technical Report 91-20, DI-MACS, 1991.

    Google Scholar 

  10. Béla Bollobás. Extremal Graph Theory. Academic Press, 1978.

    Google Scholar 

  11. Bernard Chazelle and Joel Friedman. A deterministic view of random sampling and its use in geometry. In Proc. 29th Annual IEEE Symposium on Foundations of Computer Science, pages 539–549, 1988.

    Google Scholar 

  12. Bernard Chazelle and Leonidas Guibas. Visibility and intersection problems in plane geometry. Discrete Comput. Geom., 4:551–589, 1989.

    Google Scholar 

  13. Bernard Chazelle. Tight bounds on the stabbing number of spanning trees in Euclidean space. Technical Report CS-TR-155-88, Princeton University, Department of Computer Science, 1988.

    Google Scholar 

  14. Bernard Chazelle. Polytope range searching and integral geometry. J. Amer. Math. Soc., 2:637–666, 1989.

    Google Scholar 

  15. Siu Wing Cheng and Ravi Janardan. Space-efficient ray-shooting and intersection searching: Algorithms, dynamization, and applications. In Proc. 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 7–16, 1991.

    Google Scholar 

  16. Kenneth Clarkson. Las vegas algorithms for linear and integer programming when the dimension is small. Manuscript, 1989.

    Google Scholar 

  17. Bernard Chazelle, Micha Sharir, and Emo Welzl. Quasi-optimal upper bounds for simplex range searching and new zone theorems. In Proc. 6th ACM Symp. on Comp. Geom., pages 23–33, 1990.

    Google Scholar 

  18. Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in spaces of finite VC-dimension. Discrete Comput. Geom., 4:467–489, 1989.

    Google Scholar 

  19. Herbert Edelsbrunner. Algorithms in combinatorial geometry. Springer-Verlag, Heidelberg, Germany, 1987.

    Google Scholar 

  20. [EGH+89] Herbert Edelsbrunner, Leonidas Guibas, John Herschberger, Raimund Seidel, Micha Sharir, Jack Snoeyink, and Emo Welzl. Implicitly representing arrangements of lines or segments. Discrete Comput. Geom., 4:433–466, 1989.

    Google Scholar 

  21. Herbert Edelsbrunner, N. Hasan, Raimund Seidel, and X. J. Shen. Circles through two points that always enclose many points. Geom. Dedicata, 32:1–12, 1989.

    Article  Google Scholar 

  22. Torben Hagerup and Christine Rüb. A guided tour of Chernoff bounds. Inform. Process. Lett., 33:305–308, 1990.

    Article  Google Scholar 

  23. JiŘí Matoušek. More on cutting arrangements and spanning trees with low crossing number. Technical Report B 90-02, Freie Universität Berlin, Fachbereich Mathematik, Institut für Informatik, 1990.

    Google Scholar 

  24. JiŘí Matoušek, 1991. Private communication.

    Google Scholar 

  25. JiŘí Matoušek. Efficient partition trees. In Proc. 7th Annual ACM Symposium on Computational Geometry, pages 1–9, 1991.

    Google Scholar 

  26. JiŘí Matoušek. Range searching with efficient hierarchical cuttings. Manuscript, 1991.

    Google Scholar 

  27. JiŘí Matoušek. Spanning trees with low crossing number. RAIRO Inform. Théor. Appl., 6:103–123, 1991.

    Google Scholar 

  28. JiŘí Matoušek, Emo Welzl, and Lorenz Wernisch. Discrepancy and ε-approximations for bounded VC-dimension. In Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science, pages 424–430, 1991.

    Google Scholar 

  29. János Pach. Drawing graphs. Talk presented at the Dagstuhl seminar on ‘Computational Geometry', 1991.

    Google Scholar 

  30. Raimund Seidel. Backwards analysis of randomized geometric algorithms. Manuscript, 1991.

    Google Scholar 

  31. Joel Spencer. Ten Lectures on the Probabilistic Method. Society for Industrial and Applied Mathematics, 1987.

    Google Scholar 

  32. Emo Welzl. Partition trees for triangle counting and other range searching problems. In Proc. 4th Annual ACM Symposium on Computational Geometry, pages 23–33, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. Monien Th. Ottmann

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Welzl, E. (1992). On spanning trees with low crossing numbers. In: Monien, B., Ottmann, T. (eds) Data structures and efficient algorithms. Lecture Notes in Computer Science, vol 594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55488-2_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-55488-2_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55488-2

  • Online ISBN: 978-3-540-47103-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics