Si II autoionization lines in stratified atmosphere of Bp star

  • M. Zboril
  • J. Budaj
IV. Non-classical Phenomena in Early-Type Stars
Part of the Lecture Notes in Physics book series (LNP, volume 401)


Synthetic spectra were computed under the assumption of atmosphere. stratification for Bp type star. At λ5200 depression both Si normal and autoionization lines strengthen at λ5187 and λ5204 and may contribute to λ5175 peaked contributor of λ5200 depression.


Synthetic Spectrum Stratify Atmosphere Radiative Acceleration Silicon Abundance Autoionization Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alecian G., Michaud G. (1981): Astrophys. J. 245, 226Google Scholar
  2. Artru M. C., Jamar C., Petrini D., Praderie F. (1981a): Astron. Astrophys. Suppl. Ser. 44, 171Google Scholar
  3. Artru M. C., Jamar C., Petrini D., Praderie F. (1981b): Astron. Astrophys. 96, 380Google Scholar
  4. Borsenberger J., Michaud G., Praderie F. (1981): Astrophys. J. 243, 533Google Scholar
  5. Buchholz M., Maitzen H. M. (1979): Astron. Astrophys. 73, 222Google Scholar
  6. Cowley C. R. (1981): Astrophys. J. 246, 238Google Scholar
  7. Hubeny I. (1987): Scient. and Techn. Report Astron. Inst. Czechoslov. Acad. Sci. Ondřejov Google Scholar
  8. Kurucz R. L. (1979): Center for Astrophysics Reprint Series No. 1050Google Scholar
  9. Maitzen H. M., Seggewiss W. (1980): Astron. Astrophys. 83, 328Google Scholar
  10. Maitzen H. M., Muthsam H. (1980): Astron. Astrophys. 83, 334Google Scholar
  11. Michaud G. (1970): Astrophys. J. 160, 641Google Scholar
  12. Muthsam H. (1979): Astron. Astrophys. 73, 159Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. Zboril
    • 1
  • J. Budaj
    • 1
  1. 1.Slovak Academy of SciencesAstronomical InstituteTatranská LomnicaCzechoSlovakia

Personalised recommendations