Advertisement

Modulo counting quantifiers over finite trees

  • Andreas Potthoff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 581)

Abstract

This paper studies logical definability of tree languages (sets of finite trees). The logical systems we consider are located between first-order logic and monadic second-order logic. We obtain results which clarify the expressive power of first-order logic extended by “modulo counting quantifiers”.

Keywords

Expressive Power Finite Automaton Winning Strategy Tree Language Finite Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.R.Büchi, Weak second-order arithmetik and finite automata, Z. math. Logik Grundlagen Math., 6, 1960, pp. 66–92.Google Scholar
  2. [2]
    J.Doner, Tree acceptors and some of their applications, J. of Comp. and System Sci., 4, 1970, pp. 406–451.Google Scholar
  3. [3]
    A.Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fund. Math., 49, 1961, pp. 129–141.Google Scholar
  4. [4]
    C.C.Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer. Math. Soc., 98, 1961, pp. 21–52.Google Scholar
  5. [5]
    F.Gecség and M.Steinby, ”Tree Automata”, Akadémiai Kiadó, Budapest, 1984.Google Scholar
  6. [6]
    U.Heuter, First-order properties of trees, star-free expressions and aperiodicity, RAIRO Informatique Théor. Appl., 25, 1991, pp. 125–145.Google Scholar
  7. [7]
    U.Heuter, Zur Klassifizierung regulärer Baumsprachen, Dissertation, RWTH Aachen, 1989.Google Scholar
  8. [8]
    R.McNaughton and S.Papert, ”Counter-free Automata”, M.I.T.-Press, Cambridge, Mass., 1971.Google Scholar
  9. [9]
    A.R.Meyer, A note on star-free events, J. Assoc. Comput. Mach., 16, 1969, pp. 220–225.Google Scholar
  10. [10]
    J.D.Monk, ”Mathematical Logic”, Springer Verlag, New York Heidelberg Berlin.Google Scholar
  11. [11]
    M.Nivat and A.Podelski, Tree monoids and recognizability of sets of finite trees, LITP Report 87-43, Université Paris VII, 1987.Google Scholar
  12. [12]
    D.Niwiński, Modular quantifiers in antichain logic of trees, manuscript, 1990.Google Scholar
  13. [13]
    J.G.Rosenstein, ”Linear orderings”, Academic Press, New York, 1982.Google Scholar
  14. [14]
    M.P.Schützenberger, On monoids having only trivial subgroups, Inform. Contr., 8, 1965, pp. 190–194.Google Scholar
  15. [15]
    H.Straubing, D.Thérien and W.Thomas, Regular languages defined with generalized quantifiers, Proc. 15th ICALP, T. Lepistö, A. Salomaa Eds., LNCS 317, 1988, pp. 561–575.Google Scholar
  16. [16]
    W.Thomas, Classifying regular events in symbolic logic, J. of Comp. and System Sci., 25, 1982, pp. 360–376.Google Scholar
  17. [17]
    W.Thomas, Logical aspects in the study of tree languages, Ninth Colloquium on Trees in Algebra and Programming, B. Courcelle Ed., Cambridge Univ. Press, 1984, pp. 31–51.Google Scholar
  18. [18]
    J.W.Thatcher and J.B.Wright, Generalized finite automata with an application to a decision problem of second-order logic, Math. Syst. Theory, 2, 1968, pp.57–82.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Andreas Potthoff
    • 1
  1. 1.Institut für Informatik und Praktische MathematikChristian-Albrechts-Universität KielKiel 1

Personalised recommendations