Must preorder in non-deterministic untyped λ-calculus

  • U. De'Liguoro
  • A. Piperno
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 581)


This paper studies the interplay between functional application and nondeterministic choice in the context of untyped λ-calculus. We introduce an operational semantics which is based on the idea of must preorder, coming from the theory of process algebras. To characterize this relation, we build a model using the classical inverse limit construction, and we prove it fully abstract using a generalization of Böhm trees.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Abramsky, C.H.L. Ong, Full Abstraction in the Lazy Lambda Calculus, Research Rep., Dept. of Comp., Imperial College 1989.Google Scholar
  2. [2]
    E.A. Ashcroft, M.C.B. Hennessy, “A mathematical Semantics for a Nondeterministic Typed Lambda Calculus”, TCS 11, 1980.Google Scholar
  3. [3]
    E. Astesiano, G. Costa “Distributive Semantics for Nondeterministic Typed λcalculi”, TCS 32, 1984.Google Scholar
  4. [4]
    H.P. Barendregt, The Lambda-Calculus: Its Syntax and Semantics, North-Holland, 1984.Google Scholar
  5. [5]
    C. Böhm, “Alcune proprieta' delle forme β-gh-normali nel λ-K-calcolo”, Pubblicazioni dell' I.A.C. n. 696, Roma 1968.Google Scholar
  6. [6]
    G. Boudol, “A Lambda Calculus for Parallel Functions”, INRIA Preprint, 1990.Google Scholar
  7. [7]
    M. Coppo, M. Dezani-Ciancaglini, S. Ronchi della Rocca, “(Semi)-separability of finite sets of terms in Scott's D -models of the λ-calculus”, LNCS 62, 1978.Google Scholar
  8. [8]
    U. de'Liguoro, “Non deterministic untyped λ-calculus”, Ph.D. Thesis, 1991.Google Scholar
  9. [9]
    R. De Nicola, M.C.B. Hennessy, “Testing Equivalences for Processes”, TCS 34, 1983.Google Scholar
  10. [10]
    M.C.B. Hennessy, “The Semantics of Call-by-value and Call-by-name in a nondeterministic Environment”, SIAM J. Comput. 9, 1980.Google Scholar
  11. [11]
    M.C.B. Hennessy, G.D. Plotkin, “Full Abstraction for a Simple Parallel Programming Language”, LNCS 74, 1979.Google Scholar
  12. [12]
    J.R. Hindley, G. Longo, “Lambda Calculus Models and Extensionality”, Z. Math. Logik Grundlag. Math. 26, 1980.Google Scholar
  13. [13]
    M. Hyland, “A Syntactic Characterization of the Equality in some Models for the Lambda Calculus”, J. of the London Math. Soc. 12, 1976.Google Scholar
  14. [14]
    R. Jagadeesan, P. Panangaden, “A Domain-theoretic Model for a Higher-order Process Calculus”, LNCS 443, 1990.Google Scholar
  15. [15]
    R. Milner “Functions as Processes”, LNCS 443, 1990.Google Scholar
  16. [16]
    E. Moggi, “Notions of Computation and Monads”, Inf. Comp. 93, 1991.Google Scholar
  17. [17]
    J.H. Morris, Lambda Calculus Models of Programming Languages, Dissertation, M.I.T. 1968.Google Scholar
  18. [18]
    G.D. Plotkin, “Call-by-name, Call-by-value and the λ-calculus”, TCS 1, 1975.Google Scholar
  19. [19]
    G.D. Plotkin, “A Powerdomain Construction”, SIAM J. of Comp. 5, 1976.Google Scholar
  20. [20]
    K. Sharma, Syntactic Aspects of the Non-deterministic Lambda Calculus, Master's thesis, Washington State University, September 1984. Available as internal report CS-84-127 of the Comp. Sci Dept.Google Scholar
  21. [21]
    M.B. Smyth, “Power Domains”, J. Comp. Sys. Sci. 16, 1978.Google Scholar
  22. [22]
    B. Thomsen, “A Calculus of Higher-Order Communicating Systems”, ACM 143, 1989.Google Scholar
  23. [23]
    C.P. Wadsworth, “The relation between computational and denotational properties for Scott's D -models of the lambda-calculus”, SIAM J. of Comp. 5, 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • U. De'Liguoro
    • 1
  • A. Piperno
    • 1
  1. 1.Dipartimento di MatematicaUniversità di Roma “La Sapienza”Roma

Personalised recommendations