Skip to main content

The role of cancelling magnetic fields in the buildup to erupting filaments and flares

  • 1. Preflare Situation and Flare Onset
  • Conference paper
  • First Online:
Eruptive Solar Flares

Part of the book series: Lecture Notes in Physics ((LNP,volume 399))

Abstract

We present a scenario for understanding the role of cancelling magnetic fields in the build-up to eruptive solar flares. The key intermediate step in this scenario involves the formation of a filament magnetic field in the corona above a photospheric polarity inversion where cancelling magnetic fields are observed. The formation of a filament magnetic field is accomplished in several recent models by first interpreting the cancelling fields as a visible effect of a slow, steady magnetic reconnection. This reconnection results in a reconfiguring of the magnetic field; line-of-sight pairs of closely-spaced opposite-polarity fields disappear from the photosphere thereby accounting for the cancellation; simultaneously the horizontal component is increased in the corona above the polarity inversion. The new and increasing horizontal component is synonymous with the building of a magnetic field where mass can accumulate to forma filament. If the magnetic reconnection continues for a sufficient length of time, the changing equilibrium between the growing filament magnetic field and the overlying, coronal magnetic field will result in a very slow, simultaneous ascent of both the filament magnetic field and the overlying coronal magnetic field with greater motion in the outer, weaker coronal field. This upward stretching of the magnetic fields eventually results in a closer spacing of oppositely-directed corona) magnetic fields (resembling a tangential discontinuity) beneath the filament. As depicted in some flare models, magnetic reconnection then suddenly occurs in the corona beneath the filament; flare loops form in the lower part of the reconnected field and a corona) mass ejection and erupting filament comprise the upper part of the reconnected field. To illustrate the observable phases of this scenario, we describe the build-up to two simple eruptive flares in a small active region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Recely, F. and Harvey, K.L.: 1986, Solar Terrestrial Predictions, Proceedings of a Workshop, Meudon, France, 1984, (eds.) P.A. Simon, G. Heckman and M.A. Shea, Published by NOAA (Boulder, CO, USA) and Air Force Geophysics laboratory, (Bedford, MA, USA), p.204.

    Google Scholar 

  • Hermans, L.M. and Martin, S.F.: 1986, Coronal and Prominence Plasmas, (ed.) A. Poland, NASA Conf. Publ. 2442, p. 369.

    Google Scholar 

  • Kopp, R.A. and Pneuman, G.W: 1976, Solar Phys. 50, 85.

    Google Scholar 

  • Kuijpers, J.: 1990, Plasma Phenomena in the Solar Atmosphere, 1989 Cargese workshop, eds. M.A. Dubois, F. Bely-Dubau, D. Gressillon, Les Editions de Physique, BP 112, 91944 Les Ulis Cedex, France, pp. 227–242.

    Google Scholar 

  • Livi, S.H.B., S.F. Martin, Wang, H. and Ai, G.: 1989, Solar Phys. 121, 197.

    Google Scholar 

  • Marsh, K.: 1978, Solar Phys. 59, 105.

    Google Scholar 

  • Martin, S.F.: 1986, Coronal and Prominence Plasmas, (ed.) A. Poland, NASA Conf. Publ. 2442, p. 73.

    Google Scholar 

  • Martin, S.F.: 1990, Lecture Notes in Physics 363, Dynamics of Quiescent Prominences, Springer-Verlag, p. 1.

    Google Scholar 

  • Martin, S.F., Dezso, L., Antalova, A. Kucera, A. and Harvey, K.L.: 1983. Adv. Space Res. 2, 39.

    Google Scholar 

  • Martin, S.F., Bentley, R.D, Schadee, A., Antalova, A., Kucera, A., Dezso, L., Gesztelyi, L., Harvey, K.L., Jones, H., Livi, S.H.B. and Wang, J.: 1984, Adv. Space Res. 4, 61.

    Google Scholar 

  • Martin. S.F., Livi, S.H.B., and Wang, J.: 1985, Australian J. Phys. 38, 929.

    Google Scholar 

  • Martres, M. J., Michard, R., Soru-Iscovici, I., and Tsap, T.: 1968, 1AU Symp. 35, 318.

    Google Scholar 

  • Martres, M. J., Michard, R., Soru-Iscovici, I., and Tsap, T.: 1968, Solar Phys. 5,187.

    Google Scholar 

  • Rust, D. M.: 1972, Solar Phys. 25, 141.

    Google Scholar 

  • Rust, D.M.: 1974, Flare-related Magnetic Field Dynamics, HAO Conference held in Boulder, Colorado, p. 243.

    Google Scholar 

  • Svestka, Z. and Cliver. E.W.: 1992, these proceedings.

    Google Scholar 

  • Svestka, Z., Martin, S.F. and Kopp, R.A.: 1980, Solar and Interplanetary Dynamics, (eds) M. Dryer and E. Tandberg-Hanssen, p 217.

    Google Scholar 

  • van Ballegooijen, A.A. and Martens, P.C.H.: 1989, Astrophys. J. 343, 971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zdeněk Švestka Bernard V. Jackson Marcos E. Machado

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Martin, S.F., Livi, S.H.B. (1992). The role of cancelling magnetic fields in the buildup to erupting filaments and flares. In: Å vestka, Z., Jackson, B.V., Machado, M.E. (eds) Eruptive Solar Flares. Lecture Notes in Physics, vol 399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55246-4_72

Download citation

  • DOI: https://doi.org/10.1007/3-540-55246-4_72

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55246-8

  • Online ISBN: 978-3-540-46794-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics