In-place linear probing sort

  • Svante Carlsson
  • Jyrki Katajainen
  • Jukka Teuhola
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 577)


We introduce the first sorting algorithm that is proven to sort n randomly drawn uniformly distributed elements in θ(n) time in situ. The constants in this algorithm are small, and simulations have shown it competitive with other sorting algorithms. It is, furthermore, conceptually simple and easy to code, which makes it a practical distributive sorting algorithm.


Analysis of algorithm Sorting Average-case analysis Distributive sorting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. Amble and D. E. Knuth, Ordered hash tables, Computer Journal, 17(2):135–142, (May 1974)Google Scholar
  2. [2]
    D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings, Journal of Computer System Science, 18:155–193, (1979)Google Scholar
  3. [3]
    R. W. Floyd and R. L. Rivest, Expected time bounds for selection, Communications of the ACM, 18(3):165–172, (Mar. 1975)Google Scholar
  4. [4]
    G. H. Gonnet, Handbook of Algorithms and Data Structures, Addison-Wesley, Reading Mass., (1984)Google Scholar
  5. [5]
    G. H. Gonnet and J. I. Munro, The analysis of Linear Probing Sort by the use of a new mathematical transform, Journal of Algorithms 5,(1984), 451–470.Google Scholar
  6. [6]
    T. F. Gonzalez and D. B. Johnson, Sorting numbers in linear expected time and optimal extra space, Information Processing Letters, 15(3):119–124, (Oct. 1982)Google Scholar
  7. [7]
    C. C. Handley, An in situ distributive sort, Information Processing Letters, 23(1986), 265–270Google Scholar
  8. [S]
    D. E. Knuth, The Art of Computer Programming, vol. III: Sorting and Searching, Addison-Wesley, Reading Mass. (1973)Google Scholar
  9. [9]
    T. W. Lai and D. Wood, Implicit selection, In proceedings SWAT 88, Halmstad, Sweden, Lecture Notes in Computer Science 318, 14–23, Springer Verlag, (Jul. 1988)Google Scholar
  10. [10]
    M. D. MacLaren, Internal Sorting by radix plus shifting, Journal of the ACM, 13(3):404–411, (July 1966)Google Scholar
  11. [11]
    W. W. Peterson, Addressing for random-access storage, IBM Journal on Research and Development, 1(4):130–146 (Apr. 1957)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Svante Carlsson
    • 1
  • Jyrki Katajainen
    • 2
  • Jukka Teuhola
    • 3
  1. 1.Institutionen för datateknikTekniska högskolan i Lule↕LuleåSweden
  2. 2.Datalogisk InstitutKØpenhavns UniversitetKØbenhavn ODenmark
  3. 3.Department of Computer ScienceUniversity of TurkuTurkuFinland

Personalised recommendations