Advertisement

The theory of the polynomial many-one degrees of recursive sets is undecidable

  • Klaus Ambos-Spies
  • André Nies
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 577)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Ambos-Spies, On the structure of polynomial time degrees, in “STACS 84”, Lecture Notes in Computer Science, 166 (1984) 198–208, Springer Verlag.Google Scholar
  2. 2.
    K. Ambos-Spies, On the structure of the polynomial time degrees of recursive sets, Tech. Rep. 206 (1985), Abteilung Informatik, Universität Dortmund.Google Scholar
  3. 3.
    K. Ambos-Spies, An inhomogeneity in the structure of Karp degrees, SIAM Journal on Computing 15 (1986) 958–63.Google Scholar
  4. 4.
    K. Ambos-Spies, Minimal pairs for polynomial time reducibilities, in “Computation Theory and Logic”, Lecture Notes in Computer Science, 270 (1987) 1–13, Springer Verlag.Google Scholar
  5. 5.
    K. Ambos-Spies, A. Nies and R.A. Shore, The theory of the recursively enumerable weak truthtable degrees is undecidable, J. Symbolic Logic, to appear.Google Scholar
  6. 6.
    K.Ambos-Spies and D.Yang, Honest polynomial time reducibilities (in preparation).Google Scholar
  7. 7.
    S. Burris and R. McKenzie, Decidability and Boolean representations, Memoirs Amer. Math. Soc. 32, No. 246, 1981.Google Scholar
  8. 8.
    S.A. Cook, The complexity of theorem proving procedures, Proc. Third Annual ACM Symp. on Theory of Comput., 1971, 151–158.Google Scholar
  9. 9.
    R. Downey, W.I. Gasarch and M. Moses, The structure of the honest polynomial m-degrees (to appear).Google Scholar
  10. 10.
    E. Herrmann, Definable Boolean pairs in the lattice of the recursively enumerable sets, in “Proceedings of the Conference on Model Theory, Diedrichshagen, DDR, 1983”, Seminarberichte Nr. 49, Sektion Mathematik, Humboldt-Universität, Berlin, 1983, 42–67.Google Scholar
  11. 11.
    E. Herrmann, The undecidability of the elementary theory of the lattice of recursively enumerable sets (Abstract), in “Proceedings of the Second Frege Conference, Schwerin, DDR, 1984” (G. Wechsung, ed.), Akademie-Verlag, Berlin 1984, 66–72.Google Scholar
  12. 12.
    R.M. Karp, Reducibility among combinatorial problems, in “Complexity of Computer Computations”, Plenum, N.Y., 1972, 85–103.Google Scholar
  13. 13.
    R.E. Ladner, On the structure of polynomial time reducibility, J. ACM 22 (1975), 155–171.Google Scholar
  14. 14.
    L.H. Landweber, R.J. Lipton and E.L. Robertson, On the structure of sets in NP and other complexity classes, Theor. Comput. Sci. 15 (1981) 103–123.Google Scholar
  15. 15.
    K. Mehlhorn, Polynomial and abstract subrecursive classes, J. Comput. System Sci. 12 (1976) 147–178.Google Scholar
  16. 16.
    J. Shinoda and T.A. Slaman, On the structure of the polynomial degrees of the recursive sets (to appear) [Abstract in “Structure in Complexity Theory Third Annual Conference”, IEEE Comput. Soc. Press, 1988].Google Scholar
  17. 17.
    R.A. Shore and T.A. Slaman, The p-T-degrees of the recursive sets: lattice embeddings, extensions of embeddings and the two quantifier theory (to appear) [Abstract in “Structure in Complexity Theory Fourth Annual Conference”, IEEE Comput. Soc. Press, 1989].Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Klaus Ambos-Spies
    • 1
  • André Nies
    • 1
  1. 1.Mathematisches InstitutUniversität HeidelbergHeidelberg

Personalised recommendations