Advertisement

Chemistry and physics of “agricultural” hydrogels

  • K. S. Kazanskii
  • S. A. Dubrovskii
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 104)

Abstract

Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, in particular, in agriculture for improving water retention of soils and the water supply of plants. This article reviews methods of superabsorbent gel synthesis, measurements and treatment of their properties, as well as their effects in soil and on plant growth. The thermodynamic approach used to describe the swelling behavior of polymer networks proves to be quite helpful in modelling the hydrogel efficiency as a water-absorbing additive.

Keywords

Crosslinking Density Outer Solution Ionogenic Group Hydrogel Particle Allyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

AAc

Acrylic acid

AAm

Acrylamide

AN

Acrylonitrile

MBAA

N, N′-Methylene-bis-acrylamide

PAAc

Poly(acrylic acid)

PAAm

Polyacrylamide

PAN

Polyacrylonitrile

PEG

Poly(ethylene glycol)

PEO

Poly(ethylene oxide)

PVA

Poly(vinyl alcohol)

SAH

Superabsorbent hydrogel

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. 1.
    Wichterle O, Lim D (1960) Nature 185: 117Google Scholar
  2. 2.
    Andrade JD (ed) (1976) Hydrogels for medical and related applications. ACS symp ser 31. ACS, WashingtonGoogle Scholar
  3. 3.
    Peppas NA (ed) (1986) Hydrogels in medicine and pharmacy. CRC Press, Boca RatonGoogle Scholar
  4. 4.
    Flory PJ (1953) Principles of polymer chemistry. Cornell Univ Press, Ithaca, New YorkGoogle Scholar
  5. 5.
    Masuda F (1983) Chem Econ Eng Rev 15(11): 19Google Scholar
  6. 6.
    Levy M, Vofsi D (1982) ACS Polym Prepr 23: 197Google Scholar
  7. 7.
    Jensen MH, King PA, Eikhof R (1971) In: 10th Natl Agric Plast Conf Proc Chicago, p 69Google Scholar
  8. 8.
    Eikhof RH, King PA, Moline W (1973) In: 11th Natl Agric Plast Conf Proc San Antonio, p 117Google Scholar
  9. 9.
    King PA, Eikhof RH, Jensen MH (1973) ibid., p 106Google Scholar
  10. 10.
    El-Hady OA, Azzam R (1983) Egypt J Soil Sci 23: 243Google Scholar
  11. 11.
    Azzam R et al. (1983) In: Proc Intl Symp on Isot and Rad Tech in Soil Phys and Irrig Stud Aix-en-Provance, p 321Google Scholar
  12. 12.
    Azzam R (1985) Commun Soil Sci Plant Anal 16: 1123Google Scholar
  13. 13.
    Azzam R, Danial L, Ayoub R (1986) In: Proc 6 Tihany Symp Rad Chem Siofok, 2: 649Google Scholar
  14. 14.
    Hemphill DD (1982) Hort Sci 17: 256Google Scholar
  15. 15.
    Ward SM, O'Driscoll F (1985) Agr Mechaniz in Asia, Afr and Lat Amer 16: 45Google Scholar
  16. 16.
    Gaal O, Medgyesi GA, Vereczkey L (1980) Electrophoresis in the separation of biological macromolecules. Akadémiai Kiado, BudapestGoogle Scholar
  17. 17.
    Tanaka T (1979) Polymer 20: 1404Google Scholar
  18. 18.
    Baselga J et al. (1987) Macromolecules 20: 3060Google Scholar
  19. 19.
    Ilavsky M (1982) Macromolecules 15: 782Google Scholar
  20. 20.
    Geissler E et al. (1988) Macromolecules 21: 2594Google Scholar
  21. 21.
    Oppermann W, Rose S, Rehage G (1985) Br Polym J 17: 175Google Scholar
  22. 22.
    Dubrovskii SA et al. (1990) Polym Bull 24: 107Google Scholar
  23. 23.
    Truong ND et al. (1986) Polymer 27: 459, 467Google Scholar
  24. 24.
    Baselga J et al. (1989) Polym J 21: 467Google Scholar
  25. 25.
    Watkin JE, Miller RA (1970) Anal Biochem 34: 424Google Scholar
  26. 26.
    Gupta MK, Bansil R (1981) J Polym Sci: Polym Phys Ed 19: 353Google Scholar
  27. 27.
    Bansil R, Gupta MK (1980) Ferroelectrics 30: 63Google Scholar
  28. 28.
    Hsu TP, Cohen C (1983) Polymer 24: 1273Google Scholar
  29. 29.
    Hsu TP, Ma DS, Cohen C (1984) Polymer 25: 1419Google Scholar
  30. 30.
    Janas VF, Rodrigues F, Cohen C (1980) Macromolecules 13: 977Google Scholar
  31. 31.
    Weiss N, Silberberg F (1977) Br Polym J 9: 144Google Scholar
  32. 32.
    Nieto JL et al. (1987) Eur Polym J 23: 551Google Scholar
  33. 33.
    Baselga J et al. (1988) Eur Polym J 24: 161Google Scholar
  34. 34.
    Baselga J et al. (1989) Eur Polym J 25: 471, 477Google Scholar
  35. 35.
    Rogozhin SV, Vainerman ES, Lozinsky VI (1982) Dokl Akad Nauk SSSR 263: 115Google Scholar
  36. 36.
    Lozinsky VI et al. (1986) Acta Polym 37: 142Google Scholar
  37. 37.
    Thomson RAM (1983) In: Finch CA (ed) Chemistry and technology of water-soluble polymers. Plenum Press. New York, p 31Google Scholar
  38. 38.
    Kulicke WM, Kniewske R, Klein J (1982) Progr Polym. Sci 8: 373Google Scholar
  39. 39.
    Huang MY, Heng SY (1983) Makromol Chem, Rapid Commun 4: 17Google Scholar
  40. 40.
    Rosiak J, Burczak K, Czolozińska T (1983) Rad Phys Chem 22: 917Google Scholar
  41. 41.
    Buyanov AL, Revelskaya LG, Petropavlovskii GA (1989) Zh Prikl Khim 62: 1854Google Scholar
  42. 42.
    Buyanov AL et al. (1989) Vysokomol Soedin, Ser B 31: 883Google Scholar
  43. 43.
    Fanta GF et al. (1982) Starch 34: 95Google Scholar
  44. 44.
    Fanta GF et al. (1978) Starch 30: 237Google Scholar
  45. 45.
    Castel D, Ricard A, Andebert R (1988) J Macromol Sci, Chem 25: 235Google Scholar
  46. 46.
    Castel D, Ricard A, Andebert R (1990) J Appl Polym Sci 39: 11Google Scholar
  47. 47.
    Fanta GF, Burr RC, Doan WM (1979) J Appl Polym Sci 24: 2015Google Scholar
  48. 48.
    Kazanskii KS et al. (1988) Vestn S-H Nauki 4: 125Google Scholar
  49. 49.
    Vitta SB, Stahel EP, Stannett VT (1985) J Macromol Sci, Chem 22: 579Google Scholar
  50. 50.
    Fanta GF, Burr RC, Doane WM (1982) J Appl Polym Sci 27: 4239Google Scholar
  51. 51.
    Taylor NW et al. (1978) J Appl Polym Sci 22: 1343Google Scholar
  52. 52.
    Finch CA (1983) in: Ref. [37] p 81Google Scholar
  53. 53.
    Horkay F, Nagy M (1981) Acta Chim Hung 108: 111Google Scholar
  54. 54.
    Horkay F, Nagy M (1982) Acta Chim Hung 109: 415Google Scholar
  55. 55.
    Peppas NA, Benner RE (1980) Biomaterials 1: 158Google Scholar
  56. 56.
    Reinhardt CT, Peppas NA (1984) J Membr Sci 18: 227Google Scholar
  57. 57.
    Mateescu MA et al. (1984) Polym Bull 11: 421Google Scholar
  58. 58.
    Johnson MS, (1984) J Sci Food Agric 35: 1063, 1196Google Scholar
  59. 59.
    Westman L, Lindstrom T (1981) J Appl Polym Sci 26: 2519Google Scholar
  60. 60.
    Taylor NW (1979) J Appl Polym Sci 24: 2031Google Scholar
  61. 61.
    Kobayashi S et al. (1989) Polym J 21: 971Google Scholar
  62. 62.
    Chujo Y et al. (1989) Macromolecules 22: 1074Google Scholar
  63. 63.
    Hunt JA et al. (1989) AIChE J 35: 250Google Scholar
  64. 64.
    Allain C, Salomé L (1987) Polym Commun 28: 109Google Scholar
  65. 65.
    Prud'homme RK et al. (1983) Soc Pet Eng J 23: 804Google Scholar
  66. 66.
    Jordan DS et al. (1982) Soc Pet Eng J 22: 463Google Scholar
  67. 67.
    Allain C, Salomé L (1988) In: Kramer O (ed) Biological and synthetic polymer networks. Elsevier, New York, p 291Google Scholar
  68. 68.
    Allain C, Salomé L (1987) Macromolecules 20: 2957Google Scholar
  69. 69.
    Rudman AR et al. (1983) Vysokomol Soedin, Ser A 25: 2405Google Scholar
  70. 70.
    Kopylova YeM et al. (1987) Vysokomol Soedin, Ser A 29: 517Google Scholar
  71. 71.
    Watase M et al. (1983) Polym Commun 24: 52, 270, 345Google Scholar
  72. 72.
    Fanta GF, Weaver MO, Doane WM (1974) Chem Tech 4: 675Google Scholar
  73. 73.
    Chapiro A (1960) Radiation chemistry of polymeric systems Wiley-Interscience, New YorkGoogle Scholar
  74. 74.
    Marchal J (1965) C r Acad Sci 261: 5104Google Scholar
  75. 75.
    King PA, Ward JA (1970) J Polym Sci A-1 8: 253Google Scholar
  76. 76.
    Ward JA (1971) J Polym Sci 9: 3555Google Scholar
  77. 77.
    Minkova L et al. (1989) J Polym Sci: Polym Phys 27: 621Google Scholar
  78. 78.
    Kazanskii KS, Arkhipovich GN (to be published)Google Scholar
  79. 79.
    King PA (1966) US Pat 3.264.202Google Scholar
  80. 80.
    Burillo G, Ogawa T (1980) Makromol Chem Rapid Commun 1: 545Google Scholar
  81. 81.
    Burillo G, Ogawa T (1981) Rad Phys Chem 18: 1143Google Scholar
  82. 82.
    Burillo G, Ogawa T (1986) J Appl Polym Sci 32: 3783Google Scholar
  83. 83.
    Buchanan KJ, Hird B, Letcher TM (1986) Polym Bull 15: 325Google Scholar
  84. 84.
    Chapiro A, Legris C (1986) Rad Phys Chem 28: 143Google Scholar
  85. 85.
    Ikada Y et al. (1977) Rad Phys Chem 9: 633Google Scholar
  86. 86.
    Rosiak J, Olejniczak J, Charlesby A (1988) Rad Phys Chem 32: 691Google Scholar
  87. 87.
    Yen SW, Osterholz FD (1975) US Pat 3.900.378Google Scholar
  88. 88.
    Assarsson PG, King PA (1976) US Pat 3.898.443, 3.957.605, 3.993.551, 3.993.552Google Scholar
  89. 89.
    Yoshikawa M et al. (1989) New Polym Mat 1: 223Google Scholar
  90. 90.
    Gnanou Y, Hild G, Rempp P (1984) Macromolecules 17: 945Google Scholar
  91. 91.
    Graham NB, Zulfigar M (1989) Polymer 30: 2130Google Scholar
  92. 92.
    Rogers JA, Tam T (1977) Can J Pharm Sci 12: 65Google Scholar
  93. 93.
    Graham NB, McNeil ME (1988) Makromol Chem, Makromol Symp 19: 255Google Scholar
  94. 94.
    Muller G, Laine JP, Fenyo JC (1979) J Polym Sci: Polym Chem Ed 17: 659Google Scholar
  95. 95.
    Kulicke WM, Hörl HH (1985) Colloid Polym Sci 263: 530Google Scholar
  96. 96.
    Tanaka T (1987) In: Nicolini C (ed) Structure and dynamics of biopolymers. Nijhoff Publ, Dordrecht, p 237 (NATO ASI Series E, No 133)Google Scholar
  97. 97.
    Tanaka T et al. (1980) Phys Rev Lett 45: 1636Google Scholar
  98. 98.
    Ilavský M (1981) Polymer 22: 1687Google Scholar
  99. 99.
    Vasilevskaia VV, Khokhlov AR (1986) Vysokomol Soedin, Ser A 28: 316Google Scholar
  100. 100.
    Harrison DJP, Yates WR, Johnson JE (1985) J Macromol Sci Rev Macromol Chem Phys 25: 481Google Scholar
  101. 101.
    Rička J, Tanaka T (1984) Macromolecules 17: 2916Google Scholar
  102. 102.
    Dubrovskii SA et al. (1989) Vysokomol Soedin, Ser A 31: 321Google Scholar
  103. 103.
    Dubrovskii SA et al. (1990) Vysokomol Soedin, Ser A 32: 165Google Scholar
  104. 104.
    Horkay F, Zrinyi M (1982) Macromolecules 15: 1306Google Scholar
  105. 105.
    Candau S, Bastide J, Delsanti M (1982) Adv Polym Sci 44: 27Google Scholar
  106. 106.
    Nossal R (1985) Macromolecules 18: 49Google Scholar
  107. 107.
    Rička J, Tanaka T (1985) Macromolecules 18: 83Google Scholar
  108. 108.
    Kulicke WM, Nottelmann H (1987) Polym Mater Sci Eng 57: 265Google Scholar
  109. 109.
    Nishi S, Kotaka T (1986) Macromolecules 19: 978Google Scholar
  110. 110.
    Bailey FE, Koleske JV (1976) Polyethylene oxide. Academic Press, New YorkGoogle Scholar
  111. 111.
    Khokhlov AR (1980) Polymer 21: 376Google Scholar
  112. 112.
    Nagy M, Horkay F (1979) Magy Kem Foly 85: 513Google Scholar
  113. 113.
    Hasa J, Ilavsky M, Dušek K (1975) J Polym Sci Polym Phys Ed 13: 253Google Scholar
  114. 114.
    Koňák Č, Bansil R (1989) Polymer 30: 677Google Scholar
  115. 115.
    Horkay F, Hecht AM, Geissler E (1989) Macromolecules 22: 2007Google Scholar
  116. 116.
    Dušek K, Prins W (1969) Adv Polym Sci 6: 1Google Scholar
  117. 117.
    Khokhlov AR (1980) Vysokomol Soedin, Ser B 22: 736Google Scholar
  118. 118.
    Mark JE (1982) Adv Polym Sci 44: 1Google Scholar
  119. 119.
    De Gennes P-G (1979) Scaling concepts in polymer physics. Cornell Univ Press, Ithaca, New YorkGoogle Scholar
  120. 120.
    Ilavský M, Hrouz J (1982) Polym Bull 8: 387Google Scholar
  121. 121.
    Ilavský M, Hrouz J (1983) Polum Bull 9: 159Google Scholar
  122. 122.
    Watase M (1985) Makromol Chem 186: 1081Google Scholar
  123. 123.
    Starodubtsev SG (1982) Vysokomol Soedin, Ser B 24: 67Google Scholar
  124. 124.
    Brannon-Peppas L, Peppas NA (1988) Polym Bull 20: 285Google Scholar
  125. 125.
    Tanaka T, Fillmore DJ (1979) J Chem Phys 70: 1214Google Scholar
  126. 126.
    Sato Matsuo E, Tanaka T (1988) J Chem Phys 89: 1695Google Scholar
  127. 127.
    Ilmain F, Candau SJ (1989) Makromol Chem Makromol Symp 30: 119Google Scholar
  128. 128.
    Dubrovskii SA (1988) Dokl Akad Nauk SSSR 303: 1163Google Scholar
  129. 129.
    Tanaka T et al. (1987) Nature 325: 796Google Scholar
  130. 130.
    Sekimoto K, Kawasaki K (1989) Physica A 154: 384Google Scholar
  131. 131.
    El-Hady OA et al. (1981) Acta Hort 119: 247, 257Google Scholar
  132. 132.
    Nuriev BN et al. (1986) in: Monakov VS (ed) Technical progress in deserts (in Russian). Ilym, Ashkhabad, p 59Google Scholar
  133. 133.
    Sus NS et al. (1990) Pochvovedenije 7: 149Google Scholar
  134. 134.
    Garrison S (1981) The thermodynamics of soil solutions. Clarendon Press, OxfordGoogle Scholar
  135. 135.
    Voronin AD (1984) Structural functional hydrophysics of soil (in Russian). Moscow Univ Press, MoscowGoogle Scholar
  136. 136.
    Yoshitake T (1981) Polym Digest 33: 10Google Scholar
  137. 137.
    Stevenson DS (1987) Can J Soil Sci 67: 395Google Scholar
  138. 138.
    Grula MM, Huang M (1982) Dev Ind Microbiol 22: 451Google Scholar
  139. 139.
    Lagutina MA et al. (to be published)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • K. S. Kazanskii
    • 1
  • S. A. Dubrovskii
    • 1
  1. 1.Institute of Chemical PhysicsAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations