Advertisement

Photoinduced electron transfer in amphiphilic polyelectrolyte systems

  • Yotaro Morishima
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 104)

Abstract

This review article attempts to summarize and discuss recent developments in the studies of photoinduced electron transfer in functionalized polyelectrolyte systems. The rates of photoinduced forward and thermal back electron transfers are dramatically changed when photoactive chromophores are incorporated into polyelectrolytes by covalent bonding. The origins of such changes are discussed in terms of the interfacial electrostatic potential on the molecular surface of the polyelectrolyte as well as the microphase structure formed by amphiphilic polyelectrolytes. The promise of tailored amphiphilic polyelectrolytes for designing efficient photoinduced charge separation systems is also discussed.

Keywords

Photoinduced Electron Transfer Sodium Dodecyl Sulfate Micelle Laser Photolysis Efficient Charge Separation Hydrophobic Microdomain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. 1.
    Bolton JR (1977) Solar power and fuel. Academic, New YorkGoogle Scholar
  2. 2.
    Hautala RR, King RB, Kutal C (1979) Solar energy, chemical conversion and storage. The Human Press, Clinto NJGoogle Scholar
  3. 3.
    Barber J (1979) Photosynthesis in relation to model systems. Elsevier, New YorkGoogle Scholar
  4. 4.
    Thomas JK (1984) The chemistry of excitation at interfaces. ACS Monograph Series, No 181, American Chemical Society, Washington, D.C.Google Scholar
  5. 5.
    Fendler J (1983) Membrane mimetic chemistry. Academic press, New YorkGoogle Scholar
  6. 6.
    Wilner J, Ford WE, Otvos JW, Calvin M (1979) Nature (London) 280: 823Google Scholar
  7. 7.
    Rodgers MAJ, Becker JC (1980) J Phys Chem 84: 2762Google Scholar
  8. 8.
    Jones CA, Weaner LE, Mackay RA (1980) J Phys Chem 84: 1495Google Scholar
  9. 9.
    Kalyanasundaram K (1987) Photochemistry in microheterogeneous systems. Academic, New YorkGoogle Scholar
  10. 10.
    Rabani J (1988) In: Fox MA, Chanon M (eds) Photoinduced electron transfer. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Morishima Y (1990) Prog Polym Sci 15: 949Google Scholar
  12. 12.
    Morawetz H (1970) Acc Chem Res 3: 354Google Scholar
  13. 13.
    Okubo T, Ise N (1972) Proc R Soc London Ser A 327: 413Google Scholar
  14. 14.
    Okuba T, Ise N (1973) Bull Chem Soc Jpn 46: 2493Google Scholar
  15. 15.
    Mita K, Kunugi S, Okubo T, Ise N (1975) J Chem Soc Faraday Trans 1 71: 936Google Scholar
  16. 16.
    Okubo T, Ishiwatari T, Mita K, Ise N (1975) J Phys Chem 79: 2108Google Scholar
  17. 17.
    Ise N, Okubo T (1978) Macromolecules 11: 439Google Scholar
  18. 18.
    Meisel D, Matheson MS (1977) J Am Chem Soc 99: 6577Google Scholar
  19. 19.
    Meisel D, Rabani J, Meyerstein D, Matheson MS (1978) J Phys Chem 82: 985Google Scholar
  20. 20.
    Jonah CD, Matheson MS, Meisel D (1979) J Phys Chem 83: 257Google Scholar
  21. 21.
    Meyerstein D, Rabani J, Matheson MS, Meisel D (1978) J Phys Chem 82: 1879Google Scholar
  22. 22.
    Sassoon RE, Rabani J (1980) J Phys Chem 84: 1319Google Scholar
  23. 23.
    Ladenheim H, Morawetz H (1959) J Am Chem Soc 81: 20Google Scholar
  24. 24.
    Lovrien R, Waddington JC (1964) J Am Chem Soc 86: 2315Google Scholar
  25. 25.
    Strauss UP, Jackson EG (1951) J Polym Sci 6: 649Google Scholar
  26. 26.
    Strauss UP, Gershfeld NL, Crook EH (1956) J Phys Chem 60: 577Google Scholar
  27. 27.
    Dubin P, Strauss UP (1967) J Phys Chem 71: 2757Google Scholar
  28. 28.
    Dubin P, Strauss UP (1970) J Phys Chem 74: 2842Google Scholar
  29. 29.
    Morishima Y, Itoh Y, Nozakura S (1981) Makromol Chem 182: 3135Google Scholar
  30. 30.
    Morishima Y, Kobayashi T, Nozakura S (1985) J Phys Chem 89: 4081Google Scholar
  31. 31.
    Morishima Y, Kobayashi T, Nozakura S (1989) Polym J 21: 267.Google Scholar
  32. 32.
    Morawetz H (1966) Macromolecules in solution. Interscience, New York, p 348Google Scholar
  33. 33.
    Fuoss RM, Katchalsky A, Lifson S (1951) Proc Natl Acad Sci USA 37: 579Google Scholar
  34. 34.
    Alexandrowicz Z, Katchalsky A (1963) J Polym Sci Polym Phys Ed 1: 3231Google Scholar
  35. 35.
    MacGillivray AD, Winklemann Jr JJ (1966) J Chem Phys 45: 2184Google Scholar
  36. 36.
    Dolar D, Peterlin A (1969) J Chem Phys 50: 3011Google Scholar
  37. 37.
    Stigter D (1975) J Colloid Interf Sci 53: 296Google Scholar
  38. 38.
    Lebret M, Zimm BH (1984) Biopolymers 23: 287Google Scholar
  39. 39.
    Gueron M, Weisbuch G (1980) Biopolymers 19: 353Google Scholar
  40. 40.
    Drummond CJ, Grieser F, Healy TW (1988) J Phys Chem 92: 2604Google Scholar
  41. 41.
    Steiner U, Abdel-Kader MH, Fischer P, Kramer HEA (1978) J Am Chem Soc 100: 3190Google Scholar
  42. 42.
    Morishima Y, Higuchi Y, Kamachi M (1991) J Polym Sci Polym Chem Ed 29: 677Google Scholar
  43. 43.
    Manning GS (1965) J Chem Phys 43: 4250Google Scholar
  44. 44.
    Manning GS (1979) Acct Chem Res 12: 443Google Scholar
  45. 45.
    Manning GS (1974) In: Selegny E (ed) Polyelectrolytes. Reidel Dordrecht, The Netherlands, p 9Google Scholar
  46. 46.
    Hartly GS, Roe JW (1940) Trans Faraday Soc 36: 101Google Scholar
  47. 47.
    Mukerjee P, Banerjeem K (1964) J Phys Chem 68: 3567Google Scholar
  48. 48.
    Fernàndez MS, Fromherz P (1977) J Phys Chem 81: 1755Google Scholar
  49. 49.
    Morishima Y, Kobayashi T, Nozakura S (1988) Macromolecules 21: 101Google Scholar
  50. 50.
    Itoh Y, Morishima Y, Nozakura S (1982) J Polym Sci Polym Chem Ed 20: 467Google Scholar
  51. 51.
    Morishima Y, Itoh Y, Hashimoto T, Nozakura S (1982) J Polym Sci Polym Chem Ed 20: 2007Google Scholar
  52. 52.
    Morishima Y, Tanaka T, Itoh Y, Nozakura S (1982) Polym J 14: 861Google Scholar
  53. 53.
    Morishima Y, Itoh Y, Nozakura S (1982) Chem Phys Lett 90: 258Google Scholar
  54. 54.
    Morishima Y, Nozakura S (1986) J Polym Sci Polym Symp 74: 1Google Scholar
  55. 55.
    Morishima Y, Kobayashi T, Nozakura S, Webber SE (1987) Macromolecules 20: 807Google Scholar
  56. 56.
    Morishima Y, Lim HS, Nozakura S, Sturtevant JL (1989) Macromolecules 22: 1148Google Scholar
  57. 57.
    Guillet JE, Takahashi Y, McIntosh AR, Bolton JR (1985) Macromolecules 18: 1788Google Scholar
  58. 58.
    Guillet JE, Rendall WA (1986) Macromolecules 19: 224Google Scholar
  59. 59.
    Guillet JE, Wang J, Lu L (1986) Macromolecules 19: 2793Google Scholar
  60. 60.
    Delaire JA, Rodgers MAJ, Webber SE (1984) J Phys Chem 88: 6219Google Scholar
  61. 61.
    Bai F, Chang C-H, Webber SE (1986) Macromolecules 19: 588Google Scholar
  62. 62.
    Turro NJ, Arora KS (1986) Polymer 27: 783Google Scholar
  63. 63.
    Arora KS, Hwang K-C, Turro NJ (1986) Macromolecules 19: 2806Google Scholar
  64. 64.
    Chu C-Y, Thomas JK (1984) Macromolecules 17: 2142Google Scholar
  65. 65.
    Anson FC, Saveant J-M, Shigehara K (1983) J Am Chem Soc 105: 1096Google Scholar
  66. 66.
    Anson FC, Ohsaka T, Saveant J-M (1983) J Phys Chem 87: 640Google Scholar
  67. 67.
    Montgemery DD, Anson FC (1985) J Am Chem Soc 107: 3431Google Scholar
  68. 68.
    Sbiti N, Tondre C (1984) Macromolecules 17: 369Google Scholar
  69. 69.
    Jager J, Engberts JBFN (1985) J Org Chem 50: 1474Google Scholar
  70. 70.
    Nemethy G, Scheraga HA (1962) J Chem Phys 36: 3382Google Scholar
  71. 71.
    Nemethy G, Scheraga HA (1962) J Phys Chem 66: 1773Google Scholar
  72. 72.
    Jencks WP (1969) Catalysts in chemistry and enzymology. McGraw-Hill, New York, p 393Google Scholar
  73. 73.
    Itoh Y, Morishima Y, Nozakura S (1983) J Polym Sci Polym Lett Ed 21: 167Google Scholar
  74. 74.
    Itoh Y, Morishima Y, Nozakura S (1984) Photochem Photobiol 39: 451Google Scholar
  75. 75.
    Itoh Y, Morishima Y, Nozakura S (1984) Photochem Photobiol 39: 603Google Scholar
  76. 76.
    Morishima Y, Itoh Y, Nozakurza S, Ohno T, Kato S (1984) Macromolecules 17: 2264Google Scholar
  77. 77.
    Stramel RD, Ngyen C, Webber SE, Rodgers MAJ (1988) J Phys Chem 92: 2934Google Scholar
  78. 78.
    Webber SE (1986) Macromolecules 19: 1658Google Scholar
  79. 79.
    Sassoon RE, Rabani J (1985) J Phys Chem 89: 5500Google Scholar
  80. 80.
    Kaneko M, Yamada A, Tsuchida E, Kurimura Y (1984) J Phys Chem 88: 1061Google Scholar
  81. 81.
    Kaneko M, Nakamura H (1987) Macromolecules 20: 2265Google Scholar
  82. 82.
    Ennis PM, Kelly JM, O'Connell CM (1986) J Chem Soc Dalton Trans 2485Google Scholar
  83. 83.
    Sassoon RE (1985) J Am Chem Soc 107: 6133Google Scholar
  84. 84.
    Strauch S, McLendon G, McGuire M, Guarr T (1983) J Phys Chem 87: 3579Google Scholar
  85. 85.
    Joran AD, Leland BA, Geller GG, Hopfield JJ, Dervan PB (1984) J Am Chem Soc 106: 6090Google Scholar
  86. 86.
    Leland BA, Joran AD, Felker PM, Hopfield JJ, Zewail AH, Dervan PB (1985) J Phys Chem 89: 5571Google Scholar
  87. 87.
    Joran AD, Leland BA, Felker PM, Zewail AH, Hopfield JJ, Dervan PB (1987) Nature 327: 508Google Scholar
  88. 88.
    Miller JR, Beitz JV, Huddleston RK (1984) J Am Chem Soc 106: 5057Google Scholar
  89. 89.
    McLendon G, Miller JR (1985) J Am Chem Soc 107: 7811Google Scholar
  90. 90.
    Gould IR, Ege D, Mattes SL, Farid S (1987) J Am Chem Soc 109: 3794Google Scholar
  91. 91.
    Hwang J-K, Warshel A (1987) J Am Chem Soc 109: 715Google Scholar
  92. 92.
    Isied SS, Vassilian A, Wishart JF, Creutz C, Schwarz HA, Sutin N (1988) J Am Chem Soc 110: 635Google Scholar
  93. 93.
    Kakitani T, Mataga N (1985) Chem Phys p 381Google Scholar
  94. 94.
    Kakitani T, Mataga N (1985) J Phys Chem 89: 4752Google Scholar
  95. 95.
    Kakitani T, Mataga N (1986) J Phys Chem 90: 993Google Scholar
  96. 96.
    Yoshimori A, Kakitani T, Enomoto Y, Mataga N (1989) J Phys Chem 93: 8316Google Scholar
  97. 97.
    Marcus RA (1960) Discuss Faraday Soc 29: 21Google Scholar
  98. 98.
    Marcus RA (1985) J Chem Phys 43: 2654Google Scholar
  99. 99.
    Marcus RA, Siders P (1982) J Phys Chem 86: 622Google Scholar
  100. 100.
    Mataga N, Kanda Y, Okada T (1986) J Phys Chem 90: 3880Google Scholar
  101. 101.
    Mataga N, Asahi T, Kanda Y, Okada T, Kakitani T (1988) Chem Phys 127: 249Google Scholar
  102. 102.
    Asahi T, Mataga N (1989) J Phys Chem 93: 6575Google Scholar
  103. 103.
    Miller JR (1975) Science (Washington, D.C.) 189: 221Google Scholar
  104. 104.
    Beitz JV, Miller JR (1979) J Phys Chem 71: 4579Google Scholar
  105. 105.
    Miller JR, Beitz JV (1981) J Phys Chem 74: 6746Google Scholar
  106. 106.
    Miller JR, Peaples JA, Schmitt MJ, Closs GL (1982) J Am Chem Soc 104: 6488Google Scholar
  107. 107.
    Strauch S, McLendon G, McGuire M, Guarr T (1983) J Phys Chem 87: 3579Google Scholar
  108. 108.
    Guarr T, McGuire M, Strauch S, McLendon G (1983) J Am Chem Soc 105: 616Google Scholar
  109. 109.
    Milosavljevic BH, Thomas JK (1985) Chem Phys Lett 114: 133Google Scholar
  110. 110.
    Milosavljevic BH, Thomas JK (1986) J Am Chem Soc 108: 2513Google Scholar
  111. 111.
    Stein CA, Lewis NA, Seitz G (1982) J Am Chem Soc 104: 2596Google Scholar
  112. 112.
    Pasman P, Koper NW, Verhoeven JW (1982) Recl Trav Chim Pays-Bas 101: 363Google Scholar
  113. 113.
    Mes GF, Van Ramesdonk HJ, Verhoeven JW (1984) J Am Chem Soc 106: 1335Google Scholar
  114. 114.
    Calcaterra LT, Closs GL, Miller JR (1983) J Am Chem Soc 105: 670Google Scholar
  115. 115.
    Miller JR, Calcaterra LT, Closs GL (1984) J Am Chem Soc 106: 3047Google Scholar
  116. 116.
    Wasielewski MR, Niemczyk MP (1984) J Am Chem Soc 106: 5043Google Scholar
  117. 117.
    Wasielewski MR, Niemczyk MP, Svec WA, Pewitt EB (1985) J Am Chem Soc 107: 1080Google Scholar
  118. 118.
    Beratan DN (1986) J Am Chem Soc 108: 4321Google Scholar
  119. 119.
    Morishima Y, Kobayashi T, Furui T, Nozakura S (1987) Macromolecules 20: 1707Google Scholar
  120. 120.
    Morishima Y, Furui T, Nozakura S., Okada T, Mataga N (1989) J Phys Chem 93: 1643Google Scholar
  121. 121.
    Takuma K, Sakamoto T, Nagamura T, Matsuo T (1981) J Phys Chem 85: 619Google Scholar
  122. 122.
    Matsuo T, Sakamoto T, Takuma K, Sakura K, Ohsaka T (1981) J Phys Chem 85: 1277Google Scholar
  123. 123.
    Matsuo T (1982) Pure Appl Chem 54: 1693Google Scholar
  124. 124.
    Delaire JA, Rodgers MAJ, Webber SE (1986) Eur Polym J 22: 189Google Scholar
  125. 125.
    Delaire JA, Sanquer-Barrie M, Webber SE (1988) J Phys Chem 92: 1252Google Scholar
  126. 126.
    Stramel RD, Webber SE, Rodgers MAJ (1988) J Phys Chem 92; 6625Google Scholar
  127. 127.
    Guillet J (1985) In: Polymer photophysics and photochemistry. Cambridge University Press, London, p 241Google Scholar
  128. 128.
    Nowakowska M, Sustar E, Guillet JE (1991) J Am Chem Soc 113: 253 and references thereinGoogle Scholar
  129. 129.
    Morishima Y, Seki M, Tominaga Y, Kamachi M (to be published) MacromoleculesGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Yotaro Morishima
    • 1
  1. 1.Department of Macromolecular Science, Faculty of ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations