Advertisement

Nonexistence of scattering theory at finite temperature

  • H. Narnhofer
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 396)

Abstract

We discuss the concept of scattering theory for finite temperature states. We demand that the Hamiltonian is unitarily equivalent to a free Hamiltonian with respect to quasiparticles. For translation invariant finite temperature states it is shown that if quasiparticles exist, they do not allow any freedom to distinguish between past and future particles and to find a scattering mechanism.

Keywords

Annihilation Operator Single Particle State Outgoing Particle Bogoliubov Transformation Hilbert Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Haag: Local Quantum Physics, Springer, to be published in 1992Google Scholar
  2. 2.
    C. Itzykson, J.B. Zuber: Quantum Field Theory Mc Graw Hill, New York (1980)Google Scholar
  3. 3.
    R. Haag: Dan Mat. Fys. Medd. 29/12 (1955)Google Scholar
  4. 4.
    D. Ruelle: Helv. Phys. Acta 35, 147 (1982)Google Scholar
  5. 5.
    R. Haag: Phys. Rev. 112, 669 (1958)Google Scholar
  6. 6.
    M. Reed, B. Simon: Methods of Modern Mathematical Physics III, Academic Press, New York (1979)Google Scholar
  7. 7.
    D. Buchholz: Commun. Math. Phys. 42, 269 (1975); Commun. Math. Phys. 52, 147 (1977)Google Scholar
  8. 8.
    H. Lehmann, K. Symmanzik, W. Zimmermann: Il Nuovo Cim. 1, 206 (1955)Google Scholar
  9. 9.
    R. Kubo: J. Phys. Soc. Jap. 12, 570 (1957) D.C. Martin, J. Schwinger: Phys. Rev. 115, 1342 (1959)Google Scholar
  10. 10.
    L.P. Kadanoff, G. Baym: Quantum Statistical Mechanics, Benjamin, New York (1962)Google Scholar
  11. 11.
    F.J. Dyson: Phys. Rev. 85, 631 (1952)Google Scholar
  12. 12.
    H. Posch, H. Narnhofer, W. Thirring: Phys. Rev. A 42, 1880 (1990)Google Scholar
  13. 13.
    R.F. Streater: Commun. Math. Phys. 7, 93 (1968) R.F. Streater, I.F. Wilde: Commun. Math. Phys. 17, 21 (1970)Google Scholar
  14. 14.
    H. Narnhofer, W. Thirring: Phys. Rev. Lett. 64, 1863 (1990)Google Scholar
  15. 15.
    H. Narnhofer: Acta Phys. Austr. 49, 207 (1978)Google Scholar
  16. 16.
    H. Narnhofer, W. Thirring: Phys. Rev. A 26/6, 3646 (1982)Google Scholar
  17. 17.
    R. Haag, D. Kastler, E. Trych-Pohlmeier: Commun. Math. Phys. 38, 173 1974)Google Scholar
  18. 18.
    W. Pusz, S.L. Woronowicz: Commun. Math. Phys. 58, 273 (1978)Google Scholar
  19. 19.
    H. Umezawa, H. Matsumoto, M. Tachiki: Thermo Field Dynamics and Condensed States, North Holland, Amsterdam, (1982)Google Scholar
  20. 20.
    R. Haag, N.M. Hugenholtz, M. Winnink: Commun. Math. Phys. 5, 215 (1967)Google Scholar
  21. 21.
    M. Tomita: Quasi Standard von Neumann Algebras, mimeographed lectures (1967)Google Scholar
  22. 22.
    M. Takesaki: Tomita's Theory of Modular Hilbert Algebras and its Applications, Springer, Berlin (1970)Google Scholar
  23. 23.
    H. Narnhofer: Rep. Math. Phys. 16, 1 (1979)Google Scholar
  24. 24.
    H. Narnhofer: M. Requardt, W. Thirring, Commun. Math. Phys. 92, 247 (1983)Google Scholar
  25. 25.
    N.P. Landsmann: Ann. of Physics 186, 141 (1988)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • H. Narnhofer
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WienGermany

Personalised recommendations