Complete problems involving boolean labelled structures and projection translations

  • Iain A. Stewart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 560)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AF90]
    M. AJTAI and R. FAGIN, Reachability is harder for directed than for undirected finite graphs, J. Symbolic Logic, 55, No. 1 (1990), 113–150.Google Scholar
  2. [BIS90]
    D. M. BARRINGTON, N. IMMERMAN, and H. STRAUBING, On uniformity within NC1, J. Comput. System Sci., 41 (1990), 274–306.CrossRefGoogle Scholar
  3. [Dal84]
    E. DAHLHAUS, Reduction to NP-complete problems by interpretations, Lecture Notes in Computer Science 171, Springer-Verlag, Berlin (1984), 357–365.Google Scholar
  4. [End72]
    H. B. ENDERTON, A Mathematical Introduction to Logic, Academic Press, New York (1972).Google Scholar
  5. [Fag74]
    R. FAGIN, Generalized first-order spectra and polynomial-time recognizable sets, Complexity of Computation (Ed. R.Karp), SIAMAMSProc., 7 (1974), 27–41.Google Scholar
  6. [GJ79]
    M. R. GAREY and D. S. JOHNSON, Computers and intractability, W.H.Freeman and Co., San Francisco (1979).Google Scholar
  7. [GM076]
    H. N. GABOW, S. N. MAHESHWARI, and L. J. OSTERWEIL, On two problems in the generation of program test paths, IEEE Trans. Soft. Eng., SE-2,3 (1976), 227–231.Google Scholar
  8. [Hag80]
    J. N. HAGSTROM, Combinatoric tools for computing network reliability, Ph.D Thesis, Dept. of IEOR, Univ. California, Berkeley, 1980.Google Scholar
  9. [IL89]
    N. IMMERMAN AND S. LANDAU, The complexity of iterated multiplication, Proc. 4th Symp. on Structure in Complexity Theory, IEEE Press (1989), 104–111.Google Scholar
  10. [Imm87]
    N. IMMERMAN, Languages that capture complexity classes, SIAM J. Comput, 16, 4 (1987), 760–778.CrossRefGoogle Scholar
  11. [Imm88]
    N. IMMERMAN, Nondeterministic space is closed under complementation, SIAM J. Comput., 17, 5 (1988), 935–938.CrossRefGoogle Scholar
  12. [Jer81]
    M. JERRUM, On the complexity of evaluating multivariate polynomials, Univ. of Edinburgh Tech. Rep. CST-11-81 (1981).Google Scholar
  13. [Joh85]
    D. S. JOHNSON, The NP-completeness column: an ongoing guide, J. Algorithms, 6 (1985), 145–159.CrossRefGoogle Scholar
  14. [MS72]
    A. R. MEYER AND L. J. STOCKMEYER, The equivalence problem for regular expressions with squaring requires exponential space, Proc. 13th IEEE Symp. on Switching and Automata Theory, IEEE Press (1972), 125–129.Google Scholar
  15. [PB83]
    J. S. PROVAN and M. O. BALL, The complexity of counting cuts and computing the probability that a graph is connected, SIAM J. Comput, 12 (1983), 777–788.CrossRefGoogle Scholar
  16. [Pro86]
    J. S. PROVAN, The complexity of reliability computations in planar and acyclic graphs, SIAM J. Comput., 15, 3 (1986), 694–702.CrossRefGoogle Scholar
  17. [SM73]
    L. J. STOCKMEYER AND A. R. MEYER, Word problems requiring exponential time: preliminary report, Proc. 5th ACM Symp. on Theory of Computing, ACM Press (1973), 1–9.Google Scholar
  18. [SSS91]
    K. SUTNER, A. SATYANARAYANA, and C. SUFFEL, The complexity of the residual node connectedness reliability problem, SIAM J. Comput., 20, 1 (1991), 149–155CrossRefGoogle Scholar
  19. [Ste91a]
    I. A. STEWARR, Using the Hamiltonian path operator to capture NP, J. Comput Systems Sci., to appear (also LNCS 468).Google Scholar
  20. [Ste91b]
    I. A. STEWART, Comparing the expressibility of languages formed using NP-complete operators, J. Logic Computat, 1, 3 (1991), 305–330 (also LNCS 484).Google Scholar
  21. [Ste91c]
    I. A. STEWART, On complete problems for NP via projection translations, Proc. Computer Science Logic (CSL '91), Berne, Switzerland, Oct. 7–11, 1991, Lectures Notes in Computer Science, Springer-Verlag, Berlin, to appear.Google Scholar
  22. [Sto77]
    L. J. STOCKMEYER, The polynomial-time hierarchy, Theor. Comput. Sci, 3 (1977), 1–22.CrossRefGoogle Scholar
  23. [Val79]
    L. G. VALIANT, The complexity of enumeration and reliability problems, SIAM J. Comput., 8 (1979), 410–421.CrossRefGoogle Scholar
  24. [Wra77]
    C. WRATHALL, Complete sets and the polynomial-time hierarchy, Theor. Comput Sci., 3 (1977), 23–33.CrossRefGoogle Scholar
  25. [Zem82]
    E. ZEMEL, Polynomial algorithms for estimating network reliability, Networks, 12 (1982), 439–452.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Iain A. Stewart
    • 1
  1. 1.Computing LaboratoryUniv. Newcastle upon TyneNewcastle upon TyneEngland

Personalised recommendations