Skip to main content

Self-organization and nonlinear dynamics with spatially coherent structures

  • Part IV: Two-Dimensional Structures
  • Conference paper
  • First Online:
Nonlinear Coherent Structures in Physics and Biology

Part of the book series: Lecture Notes in Physics ((LNP,volume 393))

  • 187 Accesses

Abstract

In near-integrable soliton-bearing systems spatially coherent states can play an important role. In this contribution we briefly review some of the main phenomena for physically relevant situations. We start with the well-known soliton formation in integrable systems which can be interpreted as the first appearance of self-organization in physics. It is shown here that also in non-integrable Hamiltonian systems solitary waves can self-organize. For dissipative systems, the self organization hypothesis is presented and tested for 2d drift-waves. A socalled self-organization instability is found which shows the growth of a spatially coherent (solitary) structure even in the presence of turbulence. The other finding in this respect, the absence of (Anderson) localization in nonlinear disordered systems, is also briefly mentioned. The soliton, as a collective excitation, can overcome individual chaotic motion. A recent result for the proton motion in two Morse-potentials under the influence of oscillations of the heavy ions, is discussed showing the importance of solitons to create ordered structures and collective transport. Nevertheless, solitary waves can also be the constituents of deterministic (temporal) chaos as shown in the final part of this contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967).

    Google Scholar 

  2. E.W. Laedke and K.H. Spatschek, J. Plasma Phys. 28, 469 (1982).

    Google Scholar 

  3. K.H. Spatschek, P. Heiermann, E.W. Laedke, V. Naulin, and H. Pietsch, Proc. 2nd Intern. Toki Conf., Toki, Japan (1990).

    Google Scholar 

  4. E.W. Laedke and K.H. Spatschek, Phys. Fluids 29, 133 (1986).

    Article  Google Scholar 

  5. V.E. Zakharov and A.B. Shabat, Sov. Phys.-JETP 34, 62 (1972).

    Google Scholar 

  6. E.W. Laedke and K.H. Spatschek, Phys. Rev. Lett. 41, 1798 (1978).

    Article  Google Scholar 

  7. E.W. Laedke, R. Blaha, and K.H. Spatschek, J. Math. Phys., in press.

    Google Scholar 

  8. A. Hasegawa and K. Mima, Phys. Fluids 21, 87 (1978).

    Article  Google Scholar 

  9. M. Kono and E. Miyashita, Phys. Fluids 31, 326 (1988).

    Google Scholar 

  10. K.H. Spatschek, E.W. Laedke, Chr. Marquardt, S. Musher, and H. Wenk, Phys. Rev. Lett. 64, 3027 (1990).

    PubMed  Google Scholar 

  11. A. Hasegawa, Advances in Physics 34, 1 (1985).

    Google Scholar 

  12. A. Muhm, A.M. Pukhov, K.H. Spatschek, and V.N. Tsytovich, submitted to Comments on Plasma Physics and Controlled Fusion.

    Google Scholar 

  13. V.N. Tsytovich, Theory of Turbulent Plasma (Consultants, New York 1977).

    Google Scholar 

  14. A.V. Zolotariuk, St. Pnevmatikos, and A.V. Savin, to appear in Physica D.

    Google Scholar 

  15. R. Grauer, K.H. Spatschek, and A.V. Zolotariuk, to be published.

    Google Scholar 

  16. I.M. Lifshitz, S.A. Gredeskul, and L.A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York 1988).

    Google Scholar 

  17. J.G. Caputo, A.C. Newell, and M. Shelley, in Lecture Notes in Physics 342, 49 (Springer, Berlin 1989).

    Google Scholar 

  18. O. Kluth, E.W. Laedke, H. Pietsch, K.H. Spatschek, and A.V. Zolotariuk, to be published.

    Google Scholar 

  19. K. Nozaki and N. Bekki, Physica D 21, 381 (1986).

    Google Scholar 

  20. Th. Eickermann and K.H. Spatschek, in Inverse Methods in Action, P.C. Sabatier, ed. (Springer, Berlin 1990), p. 511.

    Google Scholar 

  21. E.W. Laedke and K.H. Spatschek, J. Fluid Mech. 223, 589 (1991).

    Google Scholar 

  22. K.H. Spatschek, H. Pietsch, and E.W. Laedke, Europhys. Lett. 11, 625 (1990).

    Google Scholar 

  23. I.V. Barashenkov, M.M. Bogdan, and V.I. Korobov, Europhys. Lett. 15, 113 (1991).

    Google Scholar 

  24. X.-N. Chen and R.-J. Wei, J. Fluid Mech., to appear.

    Google Scholar 

  25. H. Friedel, E.W. Laedke, and K.H. Spatschek, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Remoissenet M. Peyrand

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Spatschek, K.H., Heiermann, P., Laedke, E.W., Naulin, V., Pietsch, H. (1991). Self-organization and nonlinear dynamics with spatially coherent structures. In: Remoissenet, M., Peyrand, M. (eds) Nonlinear Coherent Structures in Physics and Biology. Lecture Notes in Physics, vol 393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54890-4_174

Download citation

  • DOI: https://doi.org/10.1007/3-540-54890-4_174

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54890-4

  • Online ISBN: 978-3-540-46458-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics