Skip to main content

Graded logics: A framework for uncertain and defeasible knowledge

  • Communications
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 542))

Abstract

Intelligent systems require the ability to reason with incomplete knowledge. This paper presents a logical framework based on a lattice structure for handling uncertainty. Formal properties of graded inference are studied extensively. We provide a semantics for graded logic and give a sound and complete axiomatization. Finally we show how the generalization of graded inference to default rules, combined with fixpoint techniques, allows for a formalization of defeasible reasoning with uncertain knowledge.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besnard P. (1989, An introduction to default logic, Springer Verlag, Heidelberg.

    Google Scholar 

  2. Birkhoff G. (1973), Lattice Theory, American Mathematical Society Colloquium Publications, vol. XXV.

    Google Scholar 

  3. Brown A. Jr. (1988) Logics of justified belief, Proc. of the 8th ECAI, München, 507–512.

    Google Scholar 

  4. Chatalic P. and Froidevaux C. (1991), Graded logics: A framework for uncertain and defeasible knowledge, Research report 678, LRI, Orsay.

    Google Scholar 

  5. Doyle J., A truth maintenance system, AI Journal, 12, 231–272, 1979.

    Google Scholar 

  6. Dubois D. Lang J. and Prade H., (1987), Theorem proving under uncertainty — A possibilistic theory-based approach, Proc. of the 10th IJCAI, Milan, 984–986.

    Google Scholar 

  7. Dubois D. and Prade H. (1991), Epistemic entrenchment and possibilistic logic, to appear.

    Google Scholar 

  8. Dubois D. and Prade H. (with the collaboration of Farreny H., Martin-Clouaire R., Testemale C.) (1988), Possibility Theory: An approach to computerized processing of uncertainty. Plenum Press, New-York.

    Google Scholar 

  9. Dubois D. and Prade H. (1988), Default reasoning and possibility theory, Research note, AI Journal, 35, 243–257.

    Google Scholar 

  10. Elkan C. (1990), A rational reconstruction of nonmonotonic truth maintenance, AI Journal, 43, 219–234.

    Google Scholar 

  11. Farinas del Cerro L., Herzig A. (1991), A modal analysis of possibility theory, Proc. of Fundamentals of Artificial Intelligence Research (Fair' 91) Smolenice, Czechoslovakia, sept. 8–12, 1991. Springer Verlag.

    Google Scholar 

  12. Froidevaux C. and Grossetête C. (1990), Graded default theories for uncertainty, Proc. of the 9th ECAI, Stockholm, 283–288.

    Google Scholar 

  13. Fujiwara Y. & Honiden S. (1989) Relating the TMS to Autoepistemic logic, Proc. of 11th IJCAI, 1989, 1199–1205.

    Google Scholar 

  14. Gärdenfors P. Knowledge in flux: Modeling the dynamics of epistemics states, Cambridge, MIT Press, Bradford Books.

    Google Scholar 

  15. Gärdenfors P. and Makinson D. (1988), Revisions of knowledge systems using epistemic entrenchment, Proc. 2nd Conf. on Theoretical Aspects of Reasoning about Knowledge, Monterey, 83–95.

    Google Scholar 

  16. Ginsberg M.L., (1988) Multivalued-logics, a uniform approach to reasoning in artificial intelligence. Computational Intelligence 4, 265–316.

    Google Scholar 

  17. Halpern J., (1990) An analysis of First-Order Logics of probability, AI Journal, 46, 311–350.

    Google Scholar 

  18. Halpern J. and Rabin M. (1987) A logic to reason about likelihood, AI Journal, 32, 379–405.

    Google Scholar 

  19. Hughes G. & Cresswell M. (1985) An introduction to modal logic, Methuen, London.

    Google Scholar 

  20. Konolige K. (1988) On the relation between default and autoepistemic logic, AI Journal 35, 343–382, 1988.

    Google Scholar 

  21. Léa Sombé, (1990) Reasoning under incomplete information in Artificial Intelligence: A comparison of formalisms Using a single Example, Int. Journal of Intelligent Systems 5(4), 323–471, available as a monograph J. Wiley, New York.

    Google Scholar 

  22. Lukaszewicz W. (1988), Considerations on default logic: An alternative approach, Computational Intelligence, 4, 1–16.

    Google Scholar 

  23. McCarthy J. (1985), Applications of circumscription to formalizing common-sense knowledge, AI Journal, 89–116

    Google Scholar 

  24. Mengin J. (1991), A theorem prover for free default graded theories, Technical report LRI n∘ 637, University Paris 11. Also Proc. of DRUMS Workshop, Albi, 1990.

    Google Scholar 

  25. Moore R. (1985) Semantical considerations on nonmonotonic logics, AI Journal 25, 75–94.

    Google Scholar 

  26. Nilsson N.J. (1986) Probabilistic logic. Artificial Intelligence 28, 71–87.

    Google Scholar 

  27. Pearl J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA-USA.

    Google Scholar 

  28. Reinfrank M, Dressler O. & Brewka G.(1989) On the relation between Truth Maintenance and Autoepistemic logic, Proc. of 11th IJCAI, Detroit, 1206–1212.

    Google Scholar 

  29. Reiter R. (1980) A logic for default reasoning, Artificial Intelligence 13, 81–132.

    Google Scholar 

  30. Reiter R. (1987), Nonmonotonic reasoning, Annual Reviews Computer Science 2, 147–186.

    Google Scholar 

  31. Shafer G. (1976) A mathematical theory of evidence, Princeton University Press, NJ, USA.

    Google Scholar 

  32. Subrahmanian V. (1988) Intuitive semantics for quantitative rule sets, Proc. of the 5th International Conf. and Symp. on Logic Progamming, (Kowalski & Bowen eds), MIT Press, 1036–1053.

    Google Scholar 

  33. Yager R.R. (1987), Using approximate reasoning to represent default knowledge, Research note, AI Journal 31, 99–112.

    Google Scholar 

  34. Yager R.R. (1989), On the representation of commonsense knowledge by possibilistic reasoning, Int. J. Man-Machines Studies 31, 587–610.

    Google Scholar 

  35. Zadeh L.A. (1978) Fuzzy Sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Z. W. Ras M. Zemankova

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatalic, P., Froidevaux, C. (1991). Graded logics: A framework for uncertain and defeasible knowledge. In: Ras, Z.W., Zemankova, M. (eds) Methodologies for Intelligent Systems. ISMIS 1991. Lecture Notes in Computer Science, vol 542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54563-8_111

Download citation

  • DOI: https://doi.org/10.1007/3-540-54563-8_111

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54563-7

  • Online ISBN: 978-3-540-38466-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics