Skip to main content

Representation of mathematical knowledge

  • Communications
  • Conference paper
  • First Online:
Methodologies for Intelligent Systems (ISMIS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 542))

Included in the following conference series:

Abstract

We describe a method to build an environment for processing mathematical domains of computation. Basically, the environment may aid the user in: (i) specifying correct abstract computational structures and their models, (ii) completing the sets of properties of operators by means of a learning method and (iii) determining the correct domain in which a mathematical computation must be performed. The system is built upon a hybrid knowledge representation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmaier, L., Dershowitz, N., Hsiang, J.: Proof Orderings for Equational Proof; Proc. LISC 86, 346–357.

    Google Scholar 

  2. Bibel, W.: Automated Theorem Proving; Vieweg; 1982.

    Google Scholar 

  3. Belnap N.D.: A Useful Four-Valued Logic; in “Modern Uses of Multiple-Valued Logic”, ed. G. Epstein and J.M. Dunn, on: Reidel, 1977, pp. 8–37.

    Google Scholar 

  4. Bittencourt G.: An Architecture for Hybrid Knowledge Representation; Ph D Thesis; Universität Karlsruhe; 1990.

    Google Scholar 

  5. Brachman R.J., Fikes R.E., Levesque H.J.: KRYPTON: A Functional Approach to Knowledge Representation; IEEE Computer, 16 (10), pp. 67–73, 1983.

    Google Scholar 

  6. Horty J.F., Thomason R.H., Touretzky D.S.: A Skeptical Theory of Inheritance in Nonmonotonic Semantic Nets; Report CMU-CS-87-175, Carnegie-Mellon Univ., 1987.

    Google Scholar 

  7. Knuth D.E., Bendix P.B.: Simple Word Problems in Universal Algebras; OXFORD, 263–298; 1967.

    Google Scholar 

  8. Martelli A., Montanari U.: An Efficient Unification Algorithm; ACM-TOPLAS, 4(2), pp. 258–282, 1982.

    Google Scholar 

  9. Mitchell T.M., Keller R.M., Kedar-Ceballi S.T.: Explanation-Based Generalization: A Unifying View; Machine Learning 1 47–80; Kluwer Academic Publishers; 1986.

    Google Scholar 

  10. Patel-Schneider P.F.: A Decidable First-Order Logic for Knowledge Representation; Proceedings of IJCAI 9, pp. 455–458, 1985.

    Google Scholar 

  11. Waldinger, R.: Achieving Several Goals Simultaneously; in Machine Intelligence 6 (eds. E. Elcock and D. Michie), 94–136, Ellis Horwood; 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Z. W. Ras M. Zemankova

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calmet, J., Tjandra, I.A. (1991). Representation of mathematical knowledge. In: Ras, Z.W., Zemankova, M. (eds) Methodologies for Intelligent Systems. ISMIS 1991. Lecture Notes in Computer Science, vol 542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54563-8_110

Download citation

  • DOI: https://doi.org/10.1007/3-540-54563-8_110

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54563-7

  • Online ISBN: 978-3-540-38466-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics