On the parameters of algebraic geometric codes

  • H. Janwa
Invited Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 539)


We use Weierstrass gaps of points (places) to improve the lower bounds on the minimum distance and covering radius of Goppa codes and Reed-Solomon (RS) codes from function fields over finite fields. As a consequence, we show the existence of many optimal and sub-optimal codes from algebraic geometry. We give necessary conditions for equality to hold in the lower bound on the minimum distance of Goppa codes. An upper bound on the minimum distance of some RS codes (Goppa codes) is also derived.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. A. Bruen, J. A. Thas, and A. Blokhuis, “On MDS codes, arcs in PG(n,q) with q even, and a solution of three fundamental problems of B. Segre,” Invent. Math., vol. 92, pp. 441–459, 1988.Google Scholar
  2. [2]
    A. Garcia and P. Viana, “Weierstrass points on certain non-classical curves,” Arch. Math., vol. 46, 315–322, 1986. MR# 87:14027Google Scholar
  3. [3]
    V. D. Goppa, Geometry and Codes, Kluwer Academic Publishers, Massachusetts.Google Scholar
  4. [4]
    N. Hamada and M. Deza, “A survey of recent works with respect to a characterization of an (n,k,d;q)-code meeting the Griesmer bound using a min. hyper in a finite projective geometry,” Discrete Mathematics, vol. 77, pp. 75–87, 1989.Google Scholar
  5. [5]
    R. Hill, A first Course in Coding Theory, Oxford University Press: 1986.Google Scholar
  6. [6]
    R. Hill, “Optimal linear codes,” to appear in Proceedings of Second IMA Conference on Cryptography and Coding.Google Scholar
  7. [7]
    R. Hill and D.E. Netwon, “Optimal ternary linear codes,” preprint.Google Scholar
  8. [8]
    H. Janwa, “Some optimal codes from algebraic geometry and their covering radii,” European Journal of Combinatorics, vol. 11, pp. 249–266, 1990.Google Scholar
  9. [9]
    H. Janwa, “Weierstrass points and parameters of Goppa codes,” in preparation.Google Scholar
  10. [10]
    K. Komiya, “Algebraic Curves with non-classical gap sequences,” Hiroshima Math. J., vol. 8, pp. 371–400, 1978.Google Scholar
  11. [11]
    R. F. Lax, “Goppa codes and Weierstrass gaps,” preprint.Google Scholar
  12. [12]
    J. Lewittes, “Genus and gaps in function fields” J. Pure Appl. Algebra, vol. 68, pp. 44–59, 1989.Google Scholar
  13. [13]
    J. H. van Lint and G. van der Geer, Introduction to Coding theory and Algebraic Geometry, Birkhäuser Verlag: Basel 1988; DMV Seminar, Band 12.Google Scholar
  14. [14]
    K. O. Stöhr and J. F. Voloch, “Weierstrass points and curves over finite fields,” Proc. London Math. Soc., vol. 50, no. 3, pp. 1–19, 1986.Google Scholar
  15. [15]
    F.K. Schmidt, “Zur arithmetischen theorie der algebraischen functionen II,” Math. Z., vol. 45, pp. 75–96, 1939.Google Scholar
  16. [16]
    H. Stichtenoth, “Über die automorphismengruppe eines algebraischen funktionenkörpers von primzahlcharakteristik. Teil II: Ein spezieller typ von funktionenkörpern,” Arch. math., vol. 24, pp. 615–631, 1973.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • H. Janwa
    • 1
  1. 1.School of MathematicsTata Institute of Fundamental ResearchColaba, BombayIndia

Personalised recommendations