Advertisement

Algorithms for the shape of semialgebraic sets a new approach

  • Paola Cellini
  • Patrizia Gianni
  • Carlo Traverso
Invited Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 539)

Keywords

Singular Point Simple Root Tangency Point Univariate Polynomial Vertical Asymptote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AF]
    S. Arnborg and H. Fen, Algebraic decomposition of regular curves, J. of Symb. Comp. 5 (1988).Google Scholar
  2. [AGM]
    D. Arnon, G. Collins and S. MacCallum, Cylindrical algebraic decomposition I and II, SIAM J. of Computing 13 (1984).Google Scholar
  3. [AM]
    D. Arnon and S. MacCallum, A polynomial-time algorithm for the topological type of a real algebraic curve, J. of Symb. Comp. 5 (1988).Google Scholar
  4. [AR]
    M. E. Alonso, M. Raimondo, The computation of the topology of a planar semi-algebraic set, Rend. Sem. Mat. Univ. Politecnico Torino (1989).Google Scholar
  5. [AS]
    W. Auzinger, H. J. Stetter, An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations, Numerical Mathematics, Singapore 1988 (ed.: Ravi P. Agarval, Y.M.Chow, S.J.Wilson), International Series of Numerical Mathematics vol. 86, Birkhäuser Verlag, 1988, pp. 11–30.Google Scholar
  6. [BW]
    Becker, Wörman, Talk at “Geéométrie Algébrique Réelle”, La Tourballe, 1991.Google Scholar
  7. [Bu]
    B. Buchberger, Gröbner bases: an algorithmic method in polynomial ideal theory, Recent Trends in Multidimensional Systems Theory, N. K. Bose (ed.), D. Reidel Publ. Comp., 1984.Google Scholar
  8. [Ce]
    Cellini, P., Algoritmi ibridi in geometria reale, Ph. D. Thesis, 1993 (in preparation).Google Scholar
  9. [Co]
    G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, Proc. II GI Conf. on Automata and Formal Languages, LNCS 33, Springer Verlag, 1975.Google Scholar
  10. [CR]
    M. Coste and M.-F. Roy, Thom's lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets, J. of Symb. Comp. 5 (1988)Google Scholar
  11. [CGR]
    F. Cucker, L. Gonzalez Vega, F. Rossello, On algorithms for real algebraic plane curves, MEGA-90, Birkhauser, 1990.Google Scholar
  12. [CPR3]
    Cucker, F., Pardo, L. M., Raimondo, M., Recio, T., Roy, M. F., Computation of the local and global analytic structure of a real curve, AAECC-5, LNCS, Springer Verlag, 1988, pp. 161–181.Google Scholar
  13. [GTZ]
    Gianni P., Trager B., Zacharias G., Gröbner bases and Primary Decomposition of Polynomial Ideals, Jour. Symb. Comp. 6 (1988), 149–167.Google Scholar
  14. [GT1]
    P. Gianni, C. Traverso, La forma delle curve algebriche reali piane. Realizzazione di un algoritmo., Curve algebriche, Atti del convegno di Geometria Algebrica, Firenze 1981, Consiglio Nazionale delle Ricerche, IAGA.Google Scholar
  15. [GT2]
    P. Gianni, C. Traverso, Shape determination of real curves and surfaces, Ann. Univ. Ferrara, Sez. VII, Sec. Math. XXIX (1983).Google Scholar
  16. [GH]
    M. Giusti, J. Heintz, Algorithmes — disons rapides — pour la décomposition d'une variété algébrique en composantes irréductibles et équidimensionnelles, Effective methods in Algebraic Geometry, Castiglioncello, 1990, Birkhauser, 1991.Google Scholar
  17. [GC]
    A. Gonzalez Corbalan, Reconocimiento de formas en curvas planas, thesis, Universitad de Cantabria, 1990.Google Scholar
  18. [GV]
    L. Gonzalez Vega, Working with algebraic plane curves in Reduce: the GCUR package, ISSAC-91, ACM, 1991.Google Scholar
  19. [La1]
    Lakshman Y. N., On the Complexity of Computing Gröbner Bases for Zero Dimensional Polynomial Ideals, 1991, Thesis, Rensslaer Polytechnic Institute.Google Scholar
  20. [La2]
    Lakshman Y. N., A Single Exponential Bound on the Complexity of Computing Gröbner Bases of Zero Dimensional Ideals, Effective methods in Algebraic Geometry, Castiglioncello, 1990, Birkhauser, 1991.Google Scholar
  21. [M3]
    M. G. Marinari, H. M. Möller, T. Mora, Gröbner bases of ideals given by dual bases, ISSAC-91, ACM, 1991.Google Scholar
  22. [Me]
    P. Milne, On the algorithms and implementation of a Geometric Algebra System, 1990, Thesis, Bath.Google Scholar
  23. [Mi]
    J. Milnor, Morse theory, Annals of Math. Studies, 51, Cambridge Univ. Press, 1963.Google Scholar
  24. [Pe1]
    P. Pedersen, Counting real zeros, Thesis, NYU, Courant Institute, 1990.Google Scholar
  25. [Pe2]
    P. Pedersen, Counting real zeros, Talk at “Geéométrie Algébrique Réelle”, La Tourballe, 1991.Google Scholar
  26. [Ro]
    M.-F. Roy, Computation of the topology of a real algebraic curve Proceedings of the Conference on Computational geometry and topology, Sevilla 1987, (to appear).Google Scholar
  27. [St]
    Stillman, M., Methods for computing in algebraic geometry and commutative algebra, Topics in computational algebra, E. Strickland, M. G. Piacentini Cattaneo, eds., Kluwer Acad. Publ., 1990, pp. 77–103.Google Scholar
  28. [TD]
    Traverso, C., Donati, L., Experimenting the Gröbner basis algorithm with the AIPI system, ISSAC 89, A. C. M., 1989.Google Scholar
  29. [Va]
    W. Vasconcelos, Jacobian matrices and constructions in algebra, AAECC-9, (these proceedings), 1991; Constructions in commutative algebra, Computational Algebraic Geometry and Commutative Algebra, Cortona, INDAM, Cambridge Univ. Press, 1991, (to appear).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Paola Cellini
    • 1
  • Patrizia Gianni
    • 1
  • Carlo Traverso
    • 1
  1. 1.Dipartimento di MatematicaUniversità di PisaItaly

Personalised recommendations