Computation of the openness of some loci of modules

  • F. Rossi
  • W. Spangher
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 539)


Prime Ideal Local Ring Polynomial Ring Hilbert Function Free Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AB]
    Auslander M.—Bridger M., Stable module theory, Memoris of AMS 94 (1969).Google Scholar
  2. [B]
    Bayer D., The division algorithm and the Hilbert scheme, Ph.D thesis Harvard University (1982).Google Scholar
  3. [BSS]
    Bayer D.—Stillmann Ma.—Stillmann Mi., Macaulay user manual, (1989).Google Scholar
  4. [BV]
    Bruns W.—Vetter U., Determinantal rings, Lecture Notes in Math. 1327, Springer (1988).Google Scholar
  5. [DE1]
    Daepp U.—Evans A., A note on Buchsbaum rings and localizations of graded domains, Can. J. Math. 32 (1980), 1244–1249.Google Scholar
  6. [DE2]
    Daepp U.—Evans A., Openness and invariance results on generalized Cohen-Macaulay rings, Houston J. Math. 15 (1989), 193–201.Google Scholar
  7. [EHV]
    Eisenbud D.—Huneke C.—Vasconcelos W.V., Direct methods for primary decomposition, preprint (1990).Google Scholar
  8. [EG]
    Evans G.E. — Griffith P., Syzygies, London Math. Soc. Lecture Note Ser. 106, Cambridge Univ. Press (1985).Google Scholar
  9. [G]
    Grothendieck A., Eléments de géométrie algébrique, IV (Première and Seconde Partie) I.H.E.S. 20, 24 (1964), (1965).Google Scholar
  10. [MM]
    Moller H.M.—Mora F., New Constructive Methods in Classical Ideal Theory, J. Alg. 100 (1986), 138–178.Google Scholar
  11. [RS]
    Rossi F.—Spangher W., Some effective methods in the openness of loci for Cohen-Macaulay and Gorenstein properties, Proceedings MEGA '90, to appear.Google Scholar
  12. [Sc]
    Schenzel P., Einige Anwendungen der lokalen Dualität und verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr. 69 (1975), 227–242.Google Scholar
  13. [Sp]
    Spangher W., On the computation of the Hilbert-Samuel series and multiplicity, Proc. AAECC6, Lecture Notes in Comput. Sci. 357, Springer (1989), 407–414.Google Scholar
  14. [St]
    Stillmann M., Methods for computing in algebraic geometry and commutative algebra, Special Issue on Topics in Computational Algebra, Acta Appl. Math. 21(1990),77–103.Google Scholar
  15. [Sv]
    Stückrad J.—Vogel W., Buchsbaum rings and applications, Springer-VEB. Berlin (1986).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • F. Rossi
    • 1
  • W. Spangher
    • 1
  1. 1.Dipartimento di Scienze MatematicheUniversità di TriesteItaly

Personalised recommendations