Calculating multidimensional symmetric functions using Jacobi's formula

  • Paul Pedersen
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 539)


Symmetric Function Local Ring Negative Power Extraneous Factor Degree Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BCR 1987]
    Bochnak, J., M. Coste, M-F. Roy: “Géométrie algebrique réelle”, Springer Verlag, Berlin (1987).Google Scholar
  2. [BY 1987]
    Berenstein, C., and A. Yger: “Effective Bezout Identities in Q[z 1, ..., z n]”, Preprint University of Maryland (1987).Google Scholar
  3. [C 1990]
    Canny, J.: “Generalized Characteristic Polynomials”, J. Symbolic Computation (1990) 9, 241–250.Google Scholar
  4. [CG 1983]
    Chistov, A.L., Grigor'ev, D. Yu.: “Subexponential-time solving systems of algebraic equations I”. Preprint LOMI E-9-83 Lenningrad.Google Scholar
  5. [GH 1978]
    Griffiths, P., and J. Harris: “Principles of Algebraic Geometry”, Wiley-Interscience, New York (1978).Google Scholar
  6. [Jac 1835]
    Jacobi, C. G. J.: “Theoremata Nova Algebraica Systema Duarum Aequationum Inter Duas Variabiles Propositarum”, Crelle Journal für die reine und angewandte Mathematik, Bd. 14, 281–288.Google Scholar
  7. [Ren 1989]
    Renegar, J.: “On the Computational Complexity and Geometry of the First-Order Theory of the Reals”, parts I–III, Cornell School of Operations Research and Industrial Engineering (ORIE) tech reports 853,854,856 (1989).Google Scholar
  8. [Serr 1959]
    Serre, J.-P.: “Group algébriques et corps de classe”, Hermann (1959).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Paul Pedersen
    • 1
  1. 1.New York UniversityUSA

Personalised recommendations