Advertisement

Complexity of the computation of the canonical Whitney stratification of an algebraic set in Cn

  • T. Mostowski
  • E. Rannou
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 539)

Abstract

It is possible to compute the canonical Whitney stratification of an algebraic set X of Cn in sequential time doubly exponential in m, the number of nonempty sets in the filtration associated with the canonical Whitney stratification. By the usual identification of C and R2, stratifying X can be seen as a semialgebraic problem. Each stratum of the canonical Whitney stratification of X is so described by means of a formula of the elementary language of ordered fields with 2n free variables. Degree and number of the polynomials appearing in these formulas is of order doubly exponential in m.

Keywords

Tangent Space Algebraic Variety Usual Identification Elementary Formula Quantifier Elimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.BOCHNAK, M.COSTE et M.F. ROY: Géometrie algébrique réelle, Springer-Verlag (1987)Google Scholar
  2. [2]
    J.CANNY, D.GRIGOR'EV, N.VOROBJOV: Finding connected components of a semialgebraic set in subexponential time, mamuscrit L.O.M.I., Steklov Institute of Leningrad (1990)Google Scholar
  3. [3]
    D. GRIGOR'EV: Complexity of deciding Tarski algebra J. Symbolic Computation 5 (1988) 65–108Google Scholar
  4. [4]
    D. GRIGOR'EV, J. HEINTZ, M.F. ROY, P. SOLERNO, N. VOROBJOV: Comptage des composantes connexes d'un ensemble semi-algébrique en temps simplement exponentiel Compte-rendus de l'académie des sciences Paris 311 879–882 (1990).Google Scholar
  5. [5]
    D. GRIGOR'EV, N. VOROBJOV: Solving systems of polynomial inequalities in subexponentional time J. Symbolic Computation 5 (1988) 37–64Google Scholar
  6. [6]
    J. HEINTZ, M.F. ROY, P. SOLERNO: Sur la complexité du principe de Tarski-Seidenberg Bulletin de la société mathématique de France 118, 1990 p101–126Google Scholar
  7. [7]
    J.HEINTZ, M.F.ROY, P.SOLERNO: Description of the connected components of a semi-algebraic set in singly exponentional time. Manuscrit, IRMAR, Université de Rennes (1991).Google Scholar
  8. [8]
    J.RENEGAR: On the computational complexity and geometry of the first order theory of the reals Technical Report 825, Cornell University Ithaca (1989)Google Scholar
  9. [9]
    B.TEISSIER: Variétés polaires 2: Multiplicités polaires, sections planes, et conditions de Whitney Actes de la conférence de géométrie algébrique à La Ràbida, 1981, Springer Lecture Notes 961, p.314–491.Google Scholar
  10. [10]
    J. VON ZUR GATHEN: Parallel arithmetic computations: a survey Proc. 13th Symp. MFCS 1986, Springer LN Comput.Sci. 233 (1986) 93–112.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • T. Mostowski
    • 1
  • E. Rannou
    • 2
  1. 1.Dept of Math Wasaw U.Patac Kultury i Nauki,IXpWarszawaPoland
  2. 2.Campus de BeaulieuIRMAR Université de Rennes 1Rennes CedexFrance

Personalised recommendations