An ackermannian polynomial ideal

  • Guillermo Moreno Socías
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 539)


In this paper we answer the following question of Teo Mora ([8]): Write down a monomial ideal starting with a monomial of degree d, adding a monomial of degree d+1, another one of degree d+2, and so on, with every new monomial added not being a multiple of the previous ones; which is the maximal degree one can reach with this construction?

The paper is organized as follows. In section 1 we state the result concerning Mora's question; sections 2 and 3 contain some preliminaries and the proof, while in section 4 an example is shown and some remarks are made.


Maximal Degree Standard Basis Homogeneous Polynomial Lexicographic Order Hilbert Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wilhelm Ackermann, Zum Hilbertschen Aufbau der reelen Zahlen, Math. Ann. 99 (1928) 118–133.Google Scholar
  2. [2]
    David J. Anick, Thin algebras of embedding dimension three, J. of Alg. 100 (1986) 235–259.Google Scholar
  3. [3]
    G. F. Clements & B. Lindström, A generalization of a combinatorial theorem of Macaulay, J. of Comb. Th. 7 (1969) 230–238.Google Scholar
  4. [4]
    Michel Demazure, Fonctions de Hilbert-Samuel d'après Macaulay, Stanley et Bayer, Notes informelles de Calcul Formel 1, preprint, Centre de Mathématiques de l'École Polytechnique (1984).Google Scholar
  5. [5]
    Ralf Fröberg, An inequality for Hilbert series of graded algebras, Math. Scand. 56 (1985) 117–144.Google Scholar
  6. [6]
    Hans Hermes, Enumerability, Decidability, Computability (Die Grundlehren der mathematischen Wissenschaften 127). Springer, Berlin (1969).Google Scholar
  7. [7]
    F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. (2) 26 (1927) 531–555.Google Scholar
  8. [8]
    Teo Mora, personal e-mail (11 January 1991).Google Scholar
  9. [9]
    Robbiano, Lorenzo, Introduction to the theory of Hilbert functions, Queen's Papers in Pure and Applied Math. 85.Google Scholar
  10. [10]
    A. Seidenberg, On the length of a Hilbert ascending chain, Proc. Amer. Math. Soc. 29 (1971) 443–450.Google Scholar
  11. [11]
    A. Seidenberg, Constructive proof of Hilbert's theorem on ascending chains, Trans. Amer. Math. Soc. 174 (1972) 305–312.Google Scholar
  12. [12]
    E. Sperner, Über einen kombinatorischen Satz von Macaulay, Abh. der math. Ges. Universität Hamburg 1929, 149–163.Google Scholar
  13. [13]
    Richard P. Stanley, Hilbert functions of graded algebras, Adv. in Math. 28 (1978) 57–83.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Guillermo Moreno Socías
    • 1
  1. 1.Équipe de Calcul FormelCentre de Mathématiques & LIX École PolytechniquePalaiseau CedexFrance

Personalised recommendations