Advertisement

An algorithm for the computation of the radical of an ideal in the ring of polynomials

  • Teresa Krick
  • Alessandro Logar
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 539)

Keywords

Prime Ideal Polynomial Ideal Primary Decomposition Membership Problem Note Comp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.A. Alonso, T. Mora, M. Raimondo. Local decomposition algorithms. Preprint (1990).Google Scholar
  2. [2]
    D. Bayer, A. Galligo, M. Stillman. Computation of primary decompositions. Preprint (1990).Google Scholar
  3. [3]
    D. Bayer, M. Stillman. On the complexity of computing syzygies. In Computational aspects of commutative algebra edited by L. Robbiano, Acad. Press (1989), 1–13.Google Scholar
  4. [4]
    D. Bayer, M. Stillman, M. Stillman. Macaulay, a Computer Algebra System. Harvard University and Cornell University USA (1990).Google Scholar
  5. [5]
    B. Buchberger. Ein Algorithmus zum Auffinden der Basis-elemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D Thesis, Universität Insbruck 1965.Google Scholar
  6. [6]
    B. Buchberger, G. Collins, R. Loos (edited by) Computer Algebra: symbolic and algebraic computation, Wien, New York, Springer Verlag 1983.Google Scholar
  7. [7]
    A. Dickenstein, N. Fitchas, M. Giusti, C. Sessa. The membership problem for unmixed polynomial ideals is solvable in subexponential time. Preprint (1989).Google Scholar
  8. [8]
    D. Eisenbud, C. Huneke, W. Vasconcelos. Direct methods for primary decomposition. Preprint (1990).Google Scholar
  9. [9]
    P. Gianni, B. Trager, G. Zacharias. Gröbner bases and primary decomposition of polynomials ideals, In Computational aspects of commutative algebra edited by L. Robbiano, Acad. Press (1989), 15–33.Google Scholar
  10. [10]
    A. Giovini, G. Niesi. CoCoA: a user-friendly system for Commutative Algebra. To appear in the Proceedings of the DISCO conference (Capri 1990).Google Scholar
  11. [11]
    M. Giusti. Some effective problems in polynomial ideal theory. Proceedings of EUROSAM 84. Springer Lec. Notes Comp. Sci. 174 (1984), 159–171.Google Scholar
  12. [12]
    W. GrÖbner. Algebraische Geometrie II Bibliographisches Institut, Mannheim 1970.Google Scholar
  13. [13]
    G. Hermann. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann. 95 (1926), 736–788Google Scholar
  14. [14]
    R. Neuhaus. Computing radicals in a polynomial ring over a field of characteristic zero. Preprint, University of Dortmund (1990).Google Scholar
  15. [15]
    T. Krick, A. Logar. Membership problem, representation problem and the computation of the radical for one-dimensional ideals. To appear on Proceedings MEGA-90, edited by T. Mora and C. Traverso, Birkhäuser (1990).Google Scholar
  16. [16]
    D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. Proceedings of EUROCAL 83. Springer Lec. Notes Comp. Sci. 162 (1983), 146–156.Google Scholar
  17. [17]
    A. Logar. A computational proof of the Noether Normalization lemma. Proceedings of A.A.E.C.C.-6, Rome 1988Springer Lec. Notes Comp. Sci. 357 (1988), 259–273.Google Scholar
  18. [18]
    H. Matsumura. Commutative ring theory. Cambridge University press, Cambridge 1986.Google Scholar
  19. [19]
    E. Mayr, A. Meyer. The complexity of the word problems for commutative semi-groups and polynomials ideals. Adv. in Math., 46 (1982), 305–329.Google Scholar
  20. [20]
    M. Nagata. Field Theory. Marcel Dekker, Inc. New York and Basel 1977.Google Scholar
  21. [21]
    L. Robbiano. Bounds for degrees and number of elements in Gröbner bases. To appear in the Proceedings of AAECC-8 Springer Lec. Notes Comp. Sci. (1990).Google Scholar
  22. [22]
    A. Seidenberg. Constructions in algebra. Trans. Amer. Math. Soc. 197 (1974), 273–313.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Teresa Krick
    • 1
  • Alessandro Logar
    • 2
  1. 1.Instituto Argentino de MatematicaConsejo Nacional de Investigationes Cientificas y TecnicasBuenos AiresArgentina
  2. 2.Dipartimento di Scienze MatematicheUniversità degli Studi di TriesteTriesteItaly

Personalised recommendations