Buchberger algorithm and integer programming

  • Pasqualina Conti
  • Carlo Traverso
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 539)


Cost Function Minimal Solution Integer Programming Problem Critical Pair Smith Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bu]
    B. Buchberger, Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, Multidimensional Systems Theory, (ed N.K. Bose), D. Reidel Publ. Comp., pp. 184–232.Google Scholar
  2. [Co]
    P. Conti, Basi di Gröbner e sistemi lineari diofantei, Tech. Rep. Dip. Mat. Univ. Pisa, (1990).Google Scholar
  3. [CT]
    P. Conti, C. Traverso, Computing the conductor of an integral extension, (AAECC-6), Discr. Appl. Math.Google Scholar
  4. [GMNRT]
    A. Giovini, T. Mora, G. Niesi, L. Robbiano, C. Traverso, “One sugar cube, please” OR Selection strategies in Buchberger algorithm, ISSAC-91, ACM.Google Scholar
  5. [Ol]
    F. Ollivier, Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms, Mega-90, proceedings, Progress in Mathemathics, Birkhauser, 1991, pp. 379–400.Google Scholar
  6. [Po]
    L. Pottier, Minimal solutions of linear diphantine systems: bounds and algorithms, Proceedings RTA '91, Como, LNCS 488, Springer Verlag.Google Scholar
  7. [Ro]
    L. Robbiano, Term orderings on the polynomyal ring., EUROCAL 85, proceedings, Springer Lec. Notes Comp. Sci. 204, pp. 513–517.Google Scholar
  8. [Sp]
    D. Spear, A constructive approach to commutative ring theory, Proc. 1977 Macsyma User's conference, 1977, pp. 369–376.Google Scholar
  9. [SS]
    D. Shannon and M. Sweedler, Using Groebner bases to determine algebra membership, split surjective algebra homomorphisms and determine birational equivalence, J. Symb. Comp. 6 (1988), 267–273.Google Scholar
  10. [TD]
    C. Traverso, L. Donati, Experimenting the Gröbner basis alghorithm with the AlPI system, IS-SAC-89, A.C.M..Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Pasqualina Conti
    • 1
  • Carlo Traverso
    • 1
  1. 1.Istituto di Matematica Applicata — Dipartimento di MatematicaUniversità di PisaItaly

Personalised recommendations