Skip to main content

Possibilistic logic as a logical framework for min-max discrete optimisation problems and prioritized constraints

  • Part II Selected Contributions
  • Conference paper
  • First Online:
Book cover Fundamentals of Artificial Intelligence Research (FAIR 1991)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 535))

Abstract

Possibilistic logic is basically a logic of uncertainty, but a significant fragment of it can also be seen as a logic for the representation of constraints with priorities. The gradation of inconsistency enables the definition of the "best" model(s) of a "partially inconsistent" set of possibilistic formulas. Many formal results have been proved for this fragment of possibilistic logic, including its axiomatisation. Besides, there are some well-adapted automated deduction procedures. Min-max discrete optimisation problems, and more generally problems with prioritized constraints, can be translated in this logical framework, and then solved by its automated deduction procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borning A., Maher M., Martindale A., Wilson M. (1989) "Constraint hierarchies in logic programming", Proc. ICLP'89, 149–164.

    Google Scholar 

  2. Descotte Y., Latombe J.C. (1985), "Making compromises among antagonistic constraints in a planner", Artificial Intelligence, 27, 183–217.

    Google Scholar 

  3. Dubois D., Lang J., Prade H. (1987) "Theorem proving under uncertainty — A possibility theory-based approach". Proc. of the 10th Inter. Joint Conf. on Artificial Intelligence (IJCAI 87), Milano, Italy, 984–986.

    Google Scholar 

  4. Dubois D., Lang J., Prade H. (1989) "Automated reasoning using possibilistic logic: semantics, belief revision and variable certainty weights". Proc. of the 5th Workshop on Uncertainty in Artificial Intelligence, Windsor, Ontario, 81–87.

    Google Scholar 

  5. Dubois D., Lang J., Prade H. (1991) "Fuzzy Sets in Approximate Reasoning. Part 2: Logical approaches", Fuzzy Sets and Systems 40 (1), 203–244.

    Google Scholar 

  6. Dubois D., Prade H. (1982) "A class of fuzzy measures based on triangular norms. A general framework for the combination of uncertain information", Int. J of Intelligent Systems, 8(1), 43–61.

    Google Scholar 

  7. Dubois D., Prade H. (1988) (with the collaboration de Farreny H., Martin-Clouaire R., Testemale C.) "Possibility Theory: an Approach to Computerized Processing of Uncertainty". Plenum Press, New York.

    Google Scholar 

  8. Dubois D., Prade H. (1987) "Necessity measures and the resolution principle". IEEE Trans. on Systems, Man and Cybernetics, 17, 474–478.

    Google Scholar 

  9. Dubois D., Prade H. (1991) "Epistemic entrenchment and possibilistic logic", à paraître dans Artificial Intelligence.

    Google Scholar 

  10. Dubois D., Prade H., Testemale C. (1988) "In search of a modal system for possibility theory". Proc. of the Conf. on Artificial Intelligence (ECAI), Munich, Germany, 501–506.

    Google Scholar 

  11. Froidevaux C., Grossetête C. (1990) "Graded default theories for uncertainty", ECAI 90, Stockholm, 283–288.

    Google Scholar 

  12. Gärdenfors P., Makinson D. (1988) "Revision of knowledge systems using epistemic entrenchment", in M. Vardi ed., Proc. Second Conference on Theoretical Aspects of Reasoning about Knowledge (Morgan Kaufmann).

    Google Scholar 

  13. Ginsberg M.L. (1988) "Multi-valued logics: a uniform approach to reasoning in artificial intelligence". Computational Intelligence, 4, 265–316.

    Google Scholar 

  14. Hooker J.N. (1986) "A quantitative approach to logical inference", Decision Support Systems 4, 45–69.

    Google Scholar 

  15. Jeannicot S., Oxusoff L., Rauzy A. (1988) "Evaluation sémantique: une propriété de coupure pour rendre efficace la procédure de Davis et Putman". Revue d'Intelligence Artificielle, 2(1), 41–60.

    Google Scholar 

  16. Lang J. (1990) "Semantic evaluation in possibilistic logic", Proc. of the 3rd Inter. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Paris, 51–55.

    Google Scholar 

  17. Lang J. (1991) "Logique possibiliste: aspects formels, déduction automatique, et applications", PhD thesis, University of Toulouse (France), January 1991

    Google Scholar 

  18. Nilsson N. "Probabilistic logic". Artificial Intelligence, 28, 71–87.

    Google Scholar 

  19. Purdom P.W., "Search rearrangement backtracking and polynomial average time", Artificial Intelligence 21, 117–133.

    Google Scholar 

  20. Satoh K. (1990), "Formalizing soft constraints by interpretation ordering", Proc. ECAI 90, Stockholm, 585–590.

    Google Scholar 

  21. Wrzos-Kaminski J., Wrzos-Kaminska A., "Explicit ordering of defaults in ATMS", Proc. ECAI 90, Stockholm, 714–719.

    Google Scholar 

  22. Zadeh L.A. "Fuzzy sets as a basis for a theory of possibility". Fuzzy Sets and Systems, 1, 3–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philippe Jorrand Jozef Kelemen

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lang, J. (1991). Possibilistic logic as a logical framework for min-max discrete optimisation problems and prioritized constraints. In: Jorrand, P., Kelemen, J. (eds) Fundamentals of Artificial Intelligence Research. FAIR 1991. Lecture Notes in Computer Science, vol 535. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54507-7_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-54507-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54507-1

  • Online ISBN: 978-3-540-38420-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics