The gap-language-technique revisited

  • Heribert Vollmer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 533)


Generalizing work of Schöning and others concerning gap language constructs recognizable in polynomial time we examine structural properties of reducibilities defined for various “lower” or “parallel” complexity classes. Finally we show how the proof techniques for the above can be used to show the existence of easy complexity cores for sets which cannot be decided in logarithmic space.


Polynomial Time Turing Machine Complexity Class Complexity Core Recursive Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Ambos-Spies, Polynomial time degrees of NP-sets; in: E. Börger, Trends in Theoretical Computer Science, Computer Science Press, Rockville 1988, 95–142.Google Scholar
  2. [2]
    J. L. Balcázar, J. Díaz, J. Gabarró, Structural Complexity I; Springer, Berlin, 1988.Google Scholar
  3. [3]
    R. Book, D.-Z. Du, D. Russo, On polynomial and generalized complexity cores; Proc. 3rd Structure (1988), 236–250.Google Scholar
  4. [4]
    A. K. Chandra, L. Stockmeyer, U. Vishkin, Constant depth reducibility; SIAM J. Comput. (13) (1984), 423–439.CrossRefGoogle Scholar
  5. [5]
    P. Chew, M. Machtey, A note on structure and looking back applied to the relative complexity of computable functions; J. Comput. System Sci.22 (1981), 53–59.CrossRefGoogle Scholar
  6. [6]
    S. A. Cook, A taxonomy of problems with fast parallel Algorithms; Inf. & Contr. 64 (1985), 2–22.Google Scholar
  7. [7]
    R. E. Ladner, On the structure of polynomial time reducibility, J. ACM16 (1975), 155–171.CrossRefGoogle Scholar
  8. [8]
    L. H. Landweber, R. J. Lipton, E. L. Robertson, On the structure of sets in NP and other complexity classes; Theoret. Comput. Sci.1 (1975), 103–123.CrossRefGoogle Scholar
  9. [9]
    N. Lynch, On reducibility to complex or sparse sets; J.ACM22 (1975), 341–345.CrossRefGoogle Scholar
  10. [10]
    P. Orponen, U. Schöning, The density and complexity of polynomial cores for intractable sets; Inf. & Contr.70 (1986), 54–68.Google Scholar
  11. [11]
    H. Rogers Jr., Theory of Recursive Functions and Effective Computability; McGraw-Hill, New York, 1967.Google Scholar
  12. [12]
    R. I. Soare, Recursively Enumerable Sets and Degrees; Springer, Berlin, 1986.Google Scholar
  13. [13]
    U. Schöning, A uniform approach to obtain diagonal sets in complexity classes; Theoret. Comput. Sci.18 (1982), 95–103.CrossRefGoogle Scholar
  14. [14]
    U. Schöning, Minimal pairs for P, Theoret. Comput. Sci.31 (1984), 41–48.CrossRefGoogle Scholar
  15. [15]
    D. Schmidt, The recursion-theoretic structure of complexity classes; Theoret. Comput. Sci.38 (1985), 143–156.CrossRefGoogle Scholar
  16. [16]
    M. Serna, The parallel approximability of P-complete problems; Tesis doctoral, Facultat d'Informàtica de Barcelona (1990).Google Scholar
  17. [17]
    J. Torán, Structural properties of the counting hierarchies; Tesis doctoral, Facultat d'Informàtica de Barcelona (1988).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Heribert Vollmer
    • 1
  1. 1.Theoretische Informatik (FB 20)Johann-Wolfgang-Goethe-UniversitätFrankfurt am Main

Personalised recommendations