Randomness and turing reducibility restraints

  • Karol Habart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 533)


A definition of random sequences equivalent to the one of Martin-Löf and Schnorr motivated by the hierarchy of Turing reducibility restraints is introduced and compared with different similarily obtained notions.


Random Sequence Recursive Function Kolmogorov Complexity Equivalent Definition Recursive Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chaitin G.J.: A theory of program size formally identical to information theory, J.Ass. Comp. Mach. 22 (1975), 329–340.Google Scholar
  2. 2.
    Chaitin G.J.: Algorithmic information theory, J.Res. Dev. 21 (1977), 350–359; 496.Google Scholar
  3. 3.
    Dies J.E.: Information et complexité, Ann.Inst.Henri Poincaré B 12 (1976), 365–390; ibidem 14 (1978), 113–118.Google Scholar
  4. 4.
    Gacs P.: Lecture notes on descriptional complexity and randomness, BUCS Tech Report #87-013 (1987), Boston University.Google Scholar
  5. 5.
    Habart K.: Bounds in weak truth-table reducibility, to appear in: Notre Dame Jour. of Form. Logic.Google Scholar
  6. 6.
    Kobayashi K.: On compressibility of infinite sequences, Res Report (1981), Tokyo Inst.of Technology.Google Scholar
  7. 7.
    Lutz J.H.: Pseudorandom sources for BPP, Tech Report #87-22 (1987), Iowa State University.Google Scholar
  8. 8.
    Martin-Löf P.: On the definition of random sequences, Information and Control 9 (1966), 602–619.Google Scholar
  9. 9.
    Lambalgen M.van: Random sequences, PhD Thesis (1987), Univ.Amsterdam.Google Scholar
  10. 10.
    Rogers H.jr.: “Theory of recursive functions and effective computability,” McGraw-Hill, London, 1967.Google Scholar
  11. 11.
    Schnorr C.P.: Process complexity and effective random tests, J.C.S.S. 7 (1973), 376–388.Google Scholar
  12. 12.
    Schnorr C.P.: “Zufälligkeit und Wahrscheinlichkeit,” Lecture Notes in Mathematics, Springer-Verlag, 1971.Google Scholar
  13. 13.
    Soare R.I.: “Recursively enumerable sets and degrees,” Springer Verlag, Berlin and Heidelberg, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Karol Habart
    • 1
  1. 1.Dept. of LogicComenius University Philosophical FacultyBratislavaCzechoslovakia

Personalised recommendations