Advertisement

Monadic second order logic, tree automata and forbidden minors

  • Stefan Arnborg
  • Andrzej Proskurowski
  • Detlef Seese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 533)

Abstract

N.Robertson and P.D.Seymour proved that each minor closed class K of graphs is characterized by finitely many minimal forbidden minors. If these minors are given then they can be used to find an efficient membership test for such classes (see [Rob Sey 86b]). From these minors one can get a monadic second order description of the class K. Main result of the article is that from a monadic second order description of the class K. Main result of the article is that from a monadic second order description of K the minimal forbidden minors can be constructed, when K contains only graphs of universally bounded tree width. The result is applied to the class of partial 2-pathes.

Keywords

Binary Tree Order Logic Tree Decomposition Order Property Lower Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Abr Fel 89]
    M.R. Fellows and K. Abrahamson 1989, Cutset-Regularity Beats Well-Quasi-Ordering for Bounded Tree-width (Extended Abstract), preprint Nov. 1989.Google Scholar
  2. [Arn Cor Pr 86]
    S. Arnborg, A. Proskurowski and D.G. Corneil 1986, Forbidden minor characterization of partial 3-trees, Discrete Math., to appear.Google Scholar
  3. [Arn Gou Pr Se 90]
    S.Arnborg, B.Courcelle, A. Proskurowski and D. Seese 1990, An algebraic theory of graph reduction, preprint January 17, 1990.Google Scholar
  4. [Arn Lag 90]
    S. Arnborg and J. Lagergren 1990, Finding minimal forbidden minors using a finite congruence, preprint November 13, 1990.Google Scholar
  5. [Arn La Se 88]
    S. Arnborg, J. Lagergren and D. Seese 1988, Problems Easy for Tree-descomosable graphs (extended abstract). Proc. 15th ICALP, Springer Verlag, Lect. Notes in Comp. Sc. 317 38–51.Google Scholar
  6. [Arn La Se 89]
    S. Arnborg, J. Lagergren and D. Seese 1989, Problems Easy for Tree-descomposable graphs to appear in J. of Algorithm.Google Scholar
  7. [Arn Pr 86]
    S. Arnborg and A. Proskurowski 1986, Characterization and Recognition of Partial 3-trees, SIAM J.Alg. and Discr. Methods 7, 305–314.Google Scholar
  8. [Arn Pr 89]
    S. Arnborg and A. Proskurowski 1989, Linear Time Algorithm for NP-hard Problems on Graphs Embedded in k-trees Discr. Appl. Math. 23, 11–24.CrossRefGoogle Scholar
  9. [Arn Pr See 89]
    S. Arnborg, A. Proskurowski, and D. Seese 1989, Logical description of graphs of path-width 2 and their minimal forbidden minors (Draft), preliminary version, preprint July 25, 1989.Google Scholar
  10. [Bod 87]
    H.L. Bodlaender 1887, Dynamic Programming on Graphs with Bounded Tree-width, MIT/LCS/TR-394, MIT.Google Scholar
  11. [Bod 88]
    H.L. Bodlaender 1988, Improved self-reduction algorithms for graphs with bounded tree-width, Technical Report RUU-CS-88-29, September 1988, University of Utrecht.Google Scholar
  12. [Bod Klo 90]
    H.L. Bodlaender, T. KloksBetter Algorithms for the Pathwidth and Treewidth of Graphs (extended abstract), preprint 1990.Google Scholar
  13. [Bon Mur 76]
    J.A. Bondy and U.S.R. Murty 1976, Graph Theory with Applications, North Holland.Google Scholar
  14. [Cou 88]
    B. Courcelle 1988, The monadic second order logic of graphs III: Tree-width, forbidden minors, and complexity issues, Report I — 8852, Bordeaux-1 University.Google Scholar
  15. [Don 66]
    J.E. Doner 1966, Decidability of the Weak Second Order Theory of two Successors, Abstract 65T-468, Notices Amer. Math. Soc. 12, 819,ibid., 513.Google Scholar
  16. [Fel 89]
    M. Fellows 1989, Nonconstructive Proofs of Polynomial-Time Complexity: Algorithms for Computing Obstructing Sets, draft, preprint April 12, 1989.Google Scholar
  17. [Fel 89a]
    M. Fellows 1989, Applications of an Analogue of the Myhill-Nerode Theorem, In Obstruction Set Computation, preprint April 28, 1989.Google Scholar
  18. [Fel Lan 87]
    M. Fellows and M. Langston 1987, Nonconstructive Advances in Polynomial Time Complexity, Info. Proc. Letters 26, 157–162.CrossRefGoogle Scholar
  19. [Fel Lan 89]
    M. Fellows and M. Langston 1989, An Analogue of the Myhill-Nerode Theorem and Its Use in Computing Finite-Basis Characterizations (Extended Abstract), to appear, FOCS 89.Google Scholar
  20. [Fel Lan 89a]
    M. Fellows and M.Langston 1989, Exploiting RS Posets: Constructive Algorithms from Nonconstructive Tools, preprint revised February 1989.Google Scholar
  21. [Kin 89]
    N.Kinnersley 1989, Obstruction set isolation for layout permutation problems, Ph.D. thesis, Washington State University.Google Scholar
  22. [Mat Tho 88]
    J. Matoušek, R. ThomasAlgorithms finding tree — decompositions of graphs, preprint 1988.Google Scholar
  23. [Pros 84]
    A. Proskurowski 1984, Separating subgraphs in k-trees: cables and caterpillar, Discrete Mathematics 49, 275–285.CrossRefGoogle Scholar
  24. [Rab 64]
    M.O. Rabin 1964, A simple Method of Undecidability proofs and some applications, in Log. Meth. Phil. Sci. Proc. Jerusalem, 58–68.Google Scholar
  25. [Rab 69]
    M.O. Rabin 1969, Desidability of second order and automata on infinite trees, Trans. Am. Math. Soc. 141, 1–35.Google Scholar
  26. [Rob Sey 83]
    N. Robertson and P.D. Seymour 1983, Graph Minors I. Excluding a forest, J. Combin. Theory Ser.B. 35, 39–61.Google Scholar
  27. [Rob Sey 86]
    N. Robertson and P.D. Seymour 1986 Graph Minors II. Algorithmic Aspects of Tree Width Journal of Algorithms, 7, 309–322.CrossRefGoogle Scholar
  28. [Rob Sey 86a]
    N. Robertson and P.D. Seymour 1986, Graph Minors V. Excluding a planar graph J. Combinatorial Theory, Ser. B, 41, 92–114.Google Scholar
  29. [Rob Sey 86b]
    N. Robertson and P.D. Seymour 1986, Graph Minors XIII. The Disjoint Path Problem Preprint.Google Scholar
  30. [Rob Sey 88]
    N. Robertson and P.D. Seymour 1988, Graph Minors XV. Wagners conjecture Preprint.Google Scholar
  31. [Rob Sey 89]
    N. Robertson and P.D. Seymour 1989, Personal Communication, Toronto, Eugene.Google Scholar
  32. [Schef 86]
    P. Scheffler 1986, Dynamic programming algorithms for tree-descomposition problems, Karl-Weierstrass-Institut für Mathematik, Preprint P-Math-28/86, Berlin.Google Scholar
  33. [Schef 89]
    P. Scheffler 1989 Die Baumwerte von Graphen als ein Maß für die Kompliziertheit algorithmischer Probleme, Dissertation (A), AdW d. DDR, Berlin 1989.Google Scholar
  34. [Sees 85]
    D. Seese 1985, Tree-partite graphs and the complexity of algorithms (extended abstract), in FCT'85, ed. L. Budach, LNCS 199, Springer, Berlin, 412–421.Google Scholar
  35. [Sees 86]
    D. Seese 1986, Tree-partite graphs and the complexity of algorithms, preprint P-Math 08/86, Karl-Weierstrass-Institute für Mathematik.Google Scholar
  36. [Tha Wrig 68]
    J.W. Thatcher and J.B. Wright 1968, Generalized Finite Automata Theory with an Application to a Decision Problem in Second-Order Logic, Mathematical Systems Theory 2, 57–81.Google Scholar
  37. [Wim 88]
    T.V. Wimer 1988, Ph D Thesis URI-030, Clemson.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Stefan Arnborg
    • 1
  • Andrzej Proskurowski
    • 2
  • Detlef Seese
    • 3
  1. 1.NADA,KTHStockholmSweden
  2. 2.Department of Computer and Information ScienceUniversity of OregonEugèneUSA
  3. 3.Karl-Weierstrass Institute for MathematicsBerlinGermany

Personalised recommendations