Skip to main content

On the complexity of graph reconstruction

  • Commanications
  • Conference paper
  • First Online:
Book cover Fundamentals of Computation Theory (FCT 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 529))

Included in the following conference series:

Abstract

In the wake of the resolution of the four color conjecture, the graph reconstruction conjecture has emerged as one focal point of graph theory. This paper considers the computational complexity of decisions problems (deck checking and legitimate deck), the construction problems (preimage construction), and counting problems (preimage counting) related to the graph reconstruction conjecture. We show that:

  1. 1

    deck checking m graph isomorphism m legitimate deck, and

  2. 2

    if the graph reconstruction conjecture holds, then graph isomorphismiso/l deck checking.

Relatedly, we display the first natural GI-hard NP set lacking obvious padding functions. Finally, we show that legitimate deck, preimage construction, and preimage counting are solvable in polynomial time on planar graphs, graphs with bounded genus, and partial k-trees for fixed k.

Research supported in part by the National Science Foundation under grants CCR-8809174/CCR-8996198 and CCR-8957604.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity. Springer, Berlin, Vol. 1, 1988; Vol. 2, 1990.

    Google Scholar 

  2. C. Berge. Graphs. Amsterdam, 1985.

    Google Scholar 

  3. H.L. Bodlaender. Polynomial algorithms for chromatic index and graph isomorphism on partial k-trees. Technical report, Rijksuniversitet, June 1987.

    Google Scholar 

  4. J.A. Bondy. On Ulam's conjecture for separable graphs. Pacific J. Math., 31:281–288, 1969.

    Google Scholar 

  5. J.A. Bondy and R.L. Hemminger. Graph reconstruction—a survey. J. Graph Theory, 1:227–268, 1977.

    Google Scholar 

  6. G. Chartrand, V.H. Kronk, and S. Schuster. A technique for reconstructing disconnected graphs. Colloq. Math., 27:31–34, 1973.

    Google Scholar 

  7. P.Z. Chinn. A graph with ρ points and enough distinct (ρ-2)-order subgraphs is reconstructible. In Recent Trends in Graph Theory, LNM 186, pages 71–73. Springer, Berlin, 1971.

    Google Scholar 

  8. P.F. Dietz. Intersection Graph Algorithms. PhD thesis, Computer Science Dept., Cornell University, Ithaca, NY, 1984.

    Google Scholar 

  9. W. Doerfler. Some results on the reconstruction of graphs. In Infinite and Finite Sets, pages 361–383. North-Holland, Amsterdam, 1975. Colloq. Math. Soc. Janos Bolayi, Vol. 10.

    Google Scholar 

  10. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

    Google Scholar 

  11. D. Geller and B. Manvel. Reconstruction of cacti. Canad. J. Math., 21:1354–1360, 1969.

    Google Scholar 

  12. W.B. Giles. The reconstruction of outerplanar graphs. J. Combinatorial Theory Ser. B, 16:215–226, 1974.

    Google Scholar 

  13. S. Goldwasser and M. Sipser. Private coints versus public coints in interactive proof systems. In Proceedings of the 18th ACM Symposium on Theory of Computing, pages 59–68, 1986.

    Google Scholar 

  14. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.

    Google Scholar 

  15. D.L. Greenwell and R.L. Hemminger. Reconstructing graphs. In The Many Facets of Graph Theory, pages 91–114. Springer, Berlin, 1969.

    Google Scholar 

  16. D.K. Gupta. Reconstruction conjecture for square of a tree. In Graph Theory, LNM 1073, pages 268–278. Springer, Berlin, 1984.

    Google Scholar 

  17. F. Harary. On the reconstruction of a graph from a collection of subgraphs. In Theory of Graphs and its Applications, pages 47–52. Prague, 1964.

    Google Scholar 

  18. F. Harary. Graph Theory. Massachusetts, 1969.

    Google Scholar 

  19. F. Harary. A survey of the reconstruction conjecture. In Graphs and Combinatorics, LNM 406, pages 18–28. Springer, Berlin, 1974.

    Google Scholar 

  20. J. Hartmanis. On log-tape isomorphisms of complete sets. Theoret. Comput. Sci., 7:273–286, 1978.

    Google Scholar 

  21. D.S. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms, 6:434–451, 1985.

    Google Scholar 

  22. D. Joseph and P. Young. Some remarks on witness functions for non-polynomial and non-complete sets in NP. Theoret. Comput. Sci., 39:225–237, 1985.

    Google Scholar 

  23. P.J. Kelly. A congruence theorem for trees. Pacific J. Math., 7:961–968, 1957.

    Google Scholar 

  24. R. Ladner and N. Lynch. Relativization of questions about log space computability. Mathematical Systems Theory, 10(1):19–32, 1976.

    Google Scholar 

  25. R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities. Theoretical Computer Science, 1(2):103–124, 1975.

    Google Scholar 

  26. J. Lauri. Proof of Harary's conjecture on reconstruction of trees. Discrete Math., 43:79–90, 1983.

    Google Scholar 

  27. J. Lauri. Graph reconstruction—some techniques and new problems. Ars Combin., 24(B):35–61, 1987.

    Google Scholar 

  28. T. Long. Strong nondeterministic polynomial-time reducibilities. Theoretical Computer Science, 21:1–25, 1982.

    Google Scholar 

  29. B. Manvel. Reconstruction of unicyclic graphs. In Proof Techniques in Graph Theory, pages 103–107. Academic Press, New York, 1969.

    Google Scholar 

  30. B. Manvel. Reconstruction of maximal outerplanar graphs. Discrete Math., 2:269–278, 1972.

    Google Scholar 

  31. B. Manvel and J.M. Weinstein. Nearly acyclic graphs are reconstructible. J. Graph Theory, 2:25–39, 1978.

    Google Scholar 

  32. S. Micali and V.V. Vazirani. An O(V 1/2 E) algorithm for finding maximum matching in general graphs. In 21st Annual Symp. on Found. Comp. Sci., pages 17–27, New York, 1980.

    Google Scholar 

  33. C. St. J.A. Nash-Williams. The reconstruction problem. In Selected Topics in Graph Theory, pages 205–236. Academic Press, 1978.

    Google Scholar 

  34. U. Schöning. A low and high hierarchy in NP. J. Comput. System Sci., 27:14–28, 1983.

    Google Scholar 

  35. U. Schöning. Graph isomorphism is in the low hierarchy. J. Comput. System Sci., 37:312–323, 1988.

    Google Scholar 

  36. A. Selman. Polynomial time enumeration reducibility. SIAM Journal on Computing, 7(4):440–457, 1978.

    Google Scholar 

  37. S.M. Ulam. A Collection of Mathematical Problems. Interscience Publishers, New York, 1960.

    Google Scholar 

  38. M. von Rimscha. Reconstructibility and perfect graphs. Discrete Math., 47:79–90, 1983.

    Google Scholar 

  39. K. Wagner and G. Wechsung, Computational Complexity. Deutscher Verlag der Wissenschaften, Berlin, 1985.

    Google Scholar 

  40. A.T. White and L.W. Beineke. Topological graph theory. In Selected Topics in Graph Theory, Vol. 1, pages 15–49. New York, 1978.

    Google Scholar 

  41. P. Young. Juris Hartmanis: Fundamental contributions to isomorphism problems. In A. Selman, editor, Complexity Theory Retrospective, pages 28–58. Springer-Verlag, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

L. Budach

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kratsch, D., Hemachandra, L.A. (1991). On the complexity of graph reconstruction. In: Budach, L. (eds) Fundamentals of Computation Theory. FCT 1991. Lecture Notes in Computer Science, vol 529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54458-5_76

Download citation

  • DOI: https://doi.org/10.1007/3-540-54458-5_76

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54458-6

  • Online ISBN: 978-3-540-38391-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics