Narrowing as an incremental constraint satisfaction algorithm

  • María Alpuente
  • Moreno Falaschi
Session: Narrowing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 528)


Logic Program Search Tree Logic Programming Function Symbol Equational Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Alpuente, M. Falaschi, and G. Levi. Incremental Constraint Satisfaction for Equational Logic Programming. Technical report, Dipartimento di Informatica, Università di Pisa, 1991. in preparation.Google Scholar
  2. [2]
    P. Bosco, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-resolution. Theoretical Computer Science, 59:3–23, 1988.Google Scholar
  3. [3]
    N. Dershowitz and A. Plaisted. Logic Programming cum Applicative Programming. In Proc. First IEEE Int'l Symp. on Logic Programming, pages 54–66. IEEE, 1984.Google Scholar
  4. [4]
    L. Fribourg. Slog: a logic programming language interpreter based on clausal superposition and rewriting. In Proc. Second IEEE Int'l Symp. on Logic Programming, pages 172–185. IEEE, 1985.Google Scholar
  5. [5]
    U. Furbach, S. Hölldobler, and J. Schreiber. Horn equality theories and paramodulation. Journal of Automated Reasoning, 5:309–337, 1989.Google Scholar
  6. [6]
    M. Gabbrielli and G. Levi. Modeling answer constraints in Constraint Logic Programs. In K. Furukawa, editor, Proc. eighth Int'l Conf. on Logic Programming. The MIT Press, 1991. to appear.Google Scholar
  7. [7]
    J.H. Gallier and S. Raatz. Extending SLD-resolution to equational Horn clauses using E-unification. Journal of Logic Programming, 6:3–43, 1989.Google Scholar
  8. [8]
    E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel Leaf: A Logic plus Functional Language. Journal of Computer and System Sciences, 42, 1991.Google Scholar
  9. [9]
    J. A. Goguen and J. Meseguer. Eqlog: equality, types and generic modules for logic programming. In D. de Groot and G. Lindstrom, editors, Logic Programming, Functions, Relations and Equations, pages 295–262. Prentice Hall, Englewood Cliffs, NJ, 1986.Google Scholar
  10. [10]
    P. Van Hentenryck. Incremental Constraint Satisfaction in logic programming. In D.H.D. Warren and P. Szeredi, editors, Proc. Seventh Int'l Conf. on Logic Programming, pages 189–202. The MIT Press, Cambridge, Mass., 1990.Google Scholar
  11. [11]
    S. Hölldobler. Foundations of Equational Logic Programming, volume 353 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, 1989. subseries of Lecture Notes in Computer Science.Google Scholar
  12. [12]
    S. Hölldobler. Conditional equational theories and complete sets of transformations. Theoretical Computer Science, 75:85–110, 1990.Google Scholar
  13. [13]
    J.M. Hullot. Canonical Forms and Unification. In 5th Int'l Conf. on Automated Deduction, volume 87 of Lecture Notes in Computer Science, pages 318–334. Springer-Verlag, Berlin, 1980.Google Scholar
  14. [14]
    H. Hussman. Unification in conditional-equational theories. Technical report, fakultät für mathematik und informatik, Universität Passau, 1986.Google Scholar
  15. [15]
    J. Jaffar and J.-L. Lassez. Constraint Logic Programming. Technical report, Department of Computer Science, Monash University, 1986.Google Scholar
  16. [16]
    J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. Fourteenth Annual ACM Symp. on Principles of Programming Languages, pages 111–119. ACM, 1987.Google Scholar
  17. [17]
    J. Jaffar and S. Michaylov. Methodology and Implementation of a CLP System. In J.-L. Lassez, editor, Proc. Fourth Int'l Conf. on Logic Programming, pages 196–218. The MIT Press, 1987.Google Scholar
  18. [18]
    S. Kaplan. Conditional Rewrite Rules. Theoretical Computer Science, 33:175–193, 1984.Google Scholar
  19. [19]
    J.W. Lloyd. Foundations of logic programming. Springer-Verlag, Berlin, 1987. second edition.Google Scholar
  20. [20]
    J.J. Moreno and M. Rodriguez-Artalejo. BABEL: A Functional and Logic Programming Language based on a constructor discipline and narrowing. In I. Grabowski, P. Lescanne, and W. Wechler, editors, Algebraic and Logic Programming, volume 343 of Lecture Notes in Computer Science, pages 223–232. Springer-Verlag, Berlin, 1988.Google Scholar
  21. [21]
    W. Nutt, P. Réty, and G. Smolka. Basic narrowing revisited. Journal of Symbolic Computation, 7:295–317, 1989.Google Scholar
  22. [22]
    G. Plotkin. A structured approach to operational semantics. Technical Report DAIMI FN-19, Computer Science Department, Aarhus University, 1981.Google Scholar
  23. [23]
    J.H. Siekmann. Universal unification. In 7th Int'l Conf. on Automated Deduction, volume 170 of Lecture Notes in Computer Science, pages 1–42. Springer-Verlag, Berlin, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • María Alpuente
    • 1
  • Moreno Falaschi
    • 2
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations