Advertisement

U-log, an ordered sorted logic with typed attributes

  • Paul Y Gloess
Session: Extension Of Logic Programming
Part of the Lecture Notes in Computer Science book series (LNCS, volume 528)

Abstract

We extend Aït-Kaci ψ-term theory by constraining the type of arguments through an “assorted” signature. A new glb is defined, based on a “filtration” function which terminates under certain conditions. We obtain a lower lattice of “filters” with a type semantics. We introduce an equivalence relation among filters and obtain a lower lattice of “equi-filters” which has a more natural partial order and semantics. We define a constructive semantics of a Prolog extension to filters, adapted from Huet's explanation of Prolog as a polymorphic type inference system. Inference is represented by three filters, thus allowing meta-reasoning.

Keywords

Partial Order Lower Lattice Type Semantic Concrete Syntax Proof Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. [Aït-Kaci 88]
    Aït-Kaci & P. Lincoln: “LIFE, A Natural Language for Natural Language”, MCC Technical Report Number ACA-ST-074-88, Austin, February 1988.Google Scholar
  2. [Aït-Kaci 86]
    Aït-Kaci & R. Nasr: “LOGIN: A Logic Programming Language with Built-in Inheritance”, Journal of Logic Programming 3(3), pp. 187–215, 1986.Google Scholar
  3. [Andreoli 90]
    J.M. Andreoli & R. Pareschi, “Linear Objects: Logical Processes with Builtin Inheritance”, in 9th Conference on Logic Programming, Jerusalem, Israel, 1990.Google Scholar
  4. [Conrad 88]
    T. Conrad, “Equator: A Many-Sorted PROLOG Based on Equational Unification”, pp. 171–183, Actes du 7ème Séminaire de Programmation en Logique, CNET, Mai 1988.Google Scholar
  5. [Conrad 87]
    T. Conrad, “Termes Typés et Termes Globaux”, pp. 119–130, Actes du 6ème Séminaire de Programmation en Logique, CNET, Mai 1987.Google Scholar
  6. [Dincbas 79]
    M. Dincbas, “Le Système de Résolution de Problèmes Metalog”, Rapport 3146/Deri, C.E.R.T. Toulouse 1979.Google Scholar
  7. [Dorre 90]
    J. Dorre & W.C. Rounds, “On Subsumption and Semi-Unification in Feature Algebras”, in Proc. of the Fifth Symposium on Logic in Computer Science, 1990.Google Scholar
  8. [Gallaire 88]
    H. Gallaire, “Multiple Reasoning Styles in Logic Programming”, in Proceedings of FGCS'88 Conference (ICOT), Tokyo, 1988.Google Scholar
  9. [Gandriau 89]
    M. Gandriau & C. Massoutie, “Classes et Types: Aides à la Programmation Logique”, pp. 57–69, Actes du 8ème Séminaire de Programmation en Logique, CNET, Mai 1989.Google Scholar
  10. [Gloess 91]
    P.Y. Gloess, “U-Log, an Ordered sorted Logic with Typed Attributes (Extended Version)”, Report No91/12/DI, Université de Technologie de Compiègne, June 1991.Google Scholar
  11. [Gloess 90]
    P.Y. Gloess, “Contribution à l'Optimisation de Mécanismes de Raisonnement dans des Structures Spécialisées de Représentation des Connaissances”, Thèse de Doctorat d'Etat, Université de Technologie de Compiègne, 22 Janvier 90.Google Scholar
  12. [Huet 86]
    G. Huet, “Deduction and Computation”, Rapport de Recherche INRIA No513, Avril 1986.Google Scholar
  13. [Jouannaud 90]
    J-P. Jouannaud & C. Kirchner, “Solving Equations in Abstract Algebras: a Rule-Based Survey of Unification”, L.R.I. Research Report No561, Université d'Orsay ParisXI, March 1990.Google Scholar
  14. [Kirchner 88]
    C. Kirchner, “Order-Sorted Equational Unification”, Rapport de Recherche INRIA No954, Décembre 1988.Google Scholar
  15. [Mellender 88]
    F. Mellender, “An Integration of Logic and Object-Oriented Programming”, pp. 181–185, SIGPLAN Notices, Vol. 23, No10, 1988.Google Scholar
  16. [Schmidt-Schauß 89]
    M. Schmidt-Schauß, “Computational Aspects of an Order Sorted Logic with Term Declarations”, Lectures Notes in Artificial Intelligence, Vol. 395, Springer-Verlag, ISBN 3-540-51705-7 and 0-387-517-05-7, 1989.Google Scholar
  17. [Smolka 89]
    G. Smolka & H. Aït-Kaci, “Inheritance Hierarchies: Semantics and Unification”, to appear in Journal of Symbolic Computation, Special Issue on Unification, C. Kirchner, Ed., March 1989.Google Scholar
  18. [Steele 84]
    G.L. Steele Jr., “Common LISP: The Language, Digital Press”, ISBN 0-932376-41-X, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Paul Y Gloess
    • 1
    • 2
  1. 1.Université de Technologie de CompiègneCompiègneFrance
  2. 2.U.R.A. C.N.R.S. No 817, Heuristique et Diagnostic des Systèmes ComplexesFrance

Personalised recommendations