Skip to main content

Convective penetration into stellar radiation zones

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 388))

Abstract

We recall the evidence for convective penetration exhibited by geophysical fluids, laboratory experiments and computer simulations. A simple model is deduced from these observations, which serves to establish a relation between the subadiabatic extent of a convective region and the velocity of the penetrating motions. Assuming that this velocity obeys the usual scaling of thermal convection, we find that the subadiabatic penetration at the bottom of a convective envelope is of the order of a pressure scale-height, and that above a convective core it amounts to a substantial fraction of the core radius. We show that the requirements for nearly adiabatic penetration are met deep enough in a stellar interior, and that the departures from adiabaticity are confined to a thin boundary layer. This allows the use of Roxburgh's integral constraint to predict the actual size of a convective core.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, R.J.: 1975, J. Fluid Mech. 35, 7

    Google Scholar 

  • Baker, N.H. and Kuhfuß, R.: 1987, Astron. Astrophys. 185, 117

    Google Scholar 

  • Cattaneo, F., Hurlburt, N.E. and Toomre, J. 1989, in Stellar and Solar Granulation, ed. R.J. Rutten and G. Sverino (Kluwer, Dordrecht), p. 415

    Google Scholar 

  • Furumoto, A. and Rooth, C.: 1961 Geophys. Fluid Dynamics. Woods Hole Oceanographic Institution Rep.

    Google Scholar 

  • Graham, E.: 1977, in IAU Coll. 38, Problems of Stellar Convection, eds. E.A. Spiegel and J.-P. Zahn (Springer, Berlin), p. 689

    Google Scholar 

  • Hurlburt, N.E., Toomre, J. and Massaguer, J.M.: 1986, Astrophys. J. 311, 563

    Article  Google Scholar 

  • Maeder, A. and Mermilliod, J.C.: 1981, Astron. Astrophys. 93, 136

    Google Scholar 

  • Massaguer, J.M., Latour, J., Toomre, J. and Zahn, J.-P.: 1984, Astron. Astrophys. 140, 1

    Google Scholar 

  • Moore, D.R. and Weiss, N.O.: 1973, J. Fluid Mech. 61, 553

    Google Scholar 

  • Moore, D.W.: 1967, in Aerodynamical Phenomena in Stellar Atmospheres, ed. R.N. Thomas (Academic), p. 405

    Google Scholar 

  • Musman, S.: 1968, J. Fluid Mech. 31, 342

    Google Scholar 

  • Nordlund, Å: 1984, in Small Scale Dynamical Processes in Quiet Stellar Atmospheres, ed. S.L. Keil (National Solar Observatory, Sunspot), p. 181

    Google Scholar 

  • Roxburgh, I.W.: 1978, Astron. Astrophys. 65, 281

    Google Scholar 

  • Roxburgh, I.W.: 1989, Astron. Astrophys. 211, 361

    Google Scholar 

  • Stein, R. and Nordlund, Å: 1989, Astrophys. J. Letters 342, L95

    Article  Google Scholar 

  • Townsend, A.A.: 1966, Quart. J. Roy. Met. Soc. 90, 248

    Google Scholar 

  • Veronis, G.: 1963, Astrophys. J. 137, 641

    Article  Google Scholar 

  • Zahn, J.-P., Toomre, J. and Latour, J.: 1982, Geophys. Astrophys. Fluid Dyn. 22, 159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Douglas Gough Juri Toomre

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Zahn, JP. (1991). Convective penetration into stellar radiation zones. In: Gough, D., Toomre, J. (eds) Challenges to Theories of the Structure of Moderate-Mass Stars. Lecture Notes in Physics, vol 388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54420-8_70

Download citation

  • DOI: https://doi.org/10.1007/3-540-54420-8_70

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54420-3

  • Online ISBN: 978-3-540-38355-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics